

EMC TEST REPORT

For The Power supply for building-in

Models: CPFE1000F-28

Prepared for:

TDK-Lambda Americas Inc. 3055 Del Sol Blvd San Diego, CA 92154

Testing performed per the following:

PREPARED on June 06, 2011

Report Number: 2011 06175707-2 EMC

PROJECT NUMBER: 1027254

NEX NUMBER: 175707

Nemko USA,	Inc.	11696 Sorrento	valley Road, Suite F, San Dieg Phone (858) 755-5525 - Fax (8	,
DATE	DOCUMEN	ΓΝΑΜΕ	DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	ii of 87

TABLE OF CONTENTS

DOCUMENT HISTORY	iv
CERTIFICATION	v
1. ADMINISTRATIVE DATA AND TEST SUMMARY	
1.1. Administrative Data	
1.2. REFERENCED STANDARDS FOR RADIATED EMISSIONS	
1.3. REFERENCED STANDARDS FOR ELECTROMAGNETIC COMPATIBILITY	
1.4. TEST SUMMARY	8
2. SYSTEM CONFIGURATION	10
2.1. SYSTEM COMPONENTS AND POWER CABLES	10
2.2. DEVICE INTERCONNECTION AND I/O CABLES	
2.3. DESCRIPTION AND METHOD OF EXERCISING THE EUT	10
2.4. DESIGN MODIFICATIONS FOR COMPLIANCE	10
3. DESCRIPTION OF TEST SITE AND EQUIPMENT	12
3.1. DESCRIPTION OF TEST SITE	
3.2. FACILITY ACCREDITATION AND AUTHORIZATION	
4. DESCRIPTION OF TESTING METHODS	12
4.1. INTRODUCTION	
4.2. TEST METHODS	
4.3. CONFIGURATION AND METHODS OF MEASUREMENTS FOR CONDUCTED EMISSIONS	
 4.4. CONFIGURATION AND METHODS OF MEASUREMENTS FOR FREQUENCY IDENTIFICATION	
4.5. CONFIGURATION AND METHODS OF MEASUREMENTS FOR RADIATED EMISSIONS	
 4.6. POWER LINE HARMONICS: EN 61000-3-2: 2006 	
4.7. POWER LINE FLUCTUATIONS/FLICKER: EN 61000-3-3: 2008	
4.8. DEVICE PERFORMANCE CRITERIA FOR IMMUNITY TESTS	
 4.9. ELECTROSTATIC DISCHARGE IMMUNITY: IEC 61000-4-2: 2008 	
4.10. RADIO FREQUENCY IMMUNITY: IEC 61000-4-3: 2006	
4.11. ELECTRICAL FAST TRANSIENT IMMUNITY: IEC 61000-4-4: 2004	
4.12. Power Line Surge Immunity: IEC 61000-4-5: 2005	
4.13. RADIO FREQUENCY CONDUCTED COMMON MODE IMMUNITY: IEC 61000-4-6: 2008	
4.14. POWER FREQUENCY MAGNETIC FIELD IMMUNITY: IEC 61000-4-8: 2009	
4.15. VOLTAGE DIPS AND SHORT INTERRUPTIONS: IEC 61000-4-11: 2004	
4.16. OSCILLATORY WAVES IMMUNITY: IEC 61000-4-12: 2006	
4.17. VOLTAGE FLUCTUATION IMMUNITY: IEC 61000-4-14:1999 + A1:2004	
5. CE-MARK TEST RESULTS	40
5.1. CONDUCTED EMISSIONS TEST DATA	
5.1. CONDUCTED EMISSIONS TEST DATA	
5.3. POWER LINE HARMONICS TEST RESULTS	
 5.9. FOWER ENVERTHARMONICS TEST RESULTS & TEST POINTS	
5.5. RADIO FREQUENCY IMMUNITY TEST RESULTS	
5.6. ELECTRICAL FAST TRANSIENT BURST IMMUNITY TEST RESULTS	
5.0. ELECTRICAL PAST TRANSIENT BORST IMMONITY TEST RESULTS	
5.7. FOWER LINE SURGE IMMONITY TEST RESULTS	
5.9. POWER FREQUENCY MAGNETIC FIELD IMMUNITY	
5.10. Voltage Dips and Interruptions Immunity Test Results	

Nemko USA,		Phone (858) 755-5525 - Fax (8	1
DATE	DOCUMENT NAME	DOCUMENT #	PAG
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	iii of 8
5.11. Oscill	ATORY WAVES IMMUNITY TEST RESULTS		60
	GE FLUCTUATION IMMUNITY TEST RESULTS		
5.12. VOLIA	GE FLUCTUATION IMMUNITY TEST RESULTS		01
TEST SETUP D	IAGRAMS		
	UCTED EMISSIONS TEST SETUP DIAGRAM		14
	JENCY ID OF RADIATED EMISSIONS TEST SETUP DIAGRAM		
	ATED EMISSIONS TEST SETUP DIAGRAM		
	IONICS & FLICKER TEST SETUP DIAGRAM		
FIGURE 5. ESD	TEST SETUP DIAGRAM		23
FIGURE 6. RADIO) FREQUENCY IMMUNITY TEST SETUP DIAGRAM		25
	MMUNITY TEST SETUP DIAGRAM		
	R LINE SURGE IMMUNITY TEST SETUP DIAGRAM		
	OMMON MODE IMMUNITY TEST SETUP DIAGRAM		
	ER FREQUENCY MAGNETIC FIELD IMMUNITY TEST SETUP		
	TAGE DIPS AND SHORT INTERRUPTIONS TEST SETUP DIAGRAM		
FIGURE 12. OSCI	LLATORY WAVES IMMUNITY TEST SETUP DIAGRAM		37
	TAGE FLUCTUATION IMMUNITY TEST SETUP DIAGRAM		
	Test Points		
	Test Points		
TEST CONFIG	URATION PHOTOGRAPHS		
	EUT FRONT AND REAR OF 28VDC OUTPUT MODEL		
PHOTOGRAPH 2.	GENERAL EUT TEST CONFIGURATION OF 28VDC OUTPUT MODE	EL	13
	CONDUCTED EMISSIONS TEST CONFIGURATION		
PHOTOGRAPH 4.	RADIATED EMISSIONS TEST CONFIGURATION		63
PHOTOGRAPH 5.	HARMONICS & FLICKER TEST CONFIGURATION		64
PHOTOGRAPH 6.	ESD TEST CONFIGURATION		65
PHOTOGRAPH 7.	RADIO FREQUENCY IMMUNITY TEST CONFIGURATION		66
	EFT IMMUNITY TEST CONFIGURATION		
PHOTOGRAPH 9.	Power Line Surge Immunity Test Configuration		68
PHOTOGRAPH 10.	RF CONDUCTED IMMUNITY TEST CONFIGURATION		69
PHOTOGRAPH 11.	POWER FREQUENCY MAGNETIC FIELD IMMUNITY TEST CONFIC	GURATION	70
PHOTOGRAPH 12.	VOLTAGE DIPS AND INTERRUPTIONS IMMUNITY TEST CONFIGU	RATION	71
PHOTOGRAPH 13.	OSCILLATORY WAVES IMMUNITY TEST CONFIGURATION		72
PHOTOGRAPH 14.	VOLTAGE FLUCTUATION IMMUNITY TEST CONFIGURATION		73

APPENDICES

A. RADIATED EMISSIONS MEASUREMENT UNCERTAINTIES	A1
B. NEMKO USA, INC. TEST EQUIPMENT & FACILITIES CALIBRATION PROGRAM	B1
C. NVLAP ACCREDITATION	C1
D. CE102 PER MIL-STD-461E	D1

Nemko USA,	Inc.	11696 Sorrento	valley Road, Suite F, San Dieg Phone (858) 755-5525 - Fax (8	· ·
DATE	DOCUMEN	Г NAME	DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	iv of 87

DOCUMENT HISTORY

REVISION	DATE	CC	OMMENTS
-	June 06, 2011	Prepared By:	Alex Chang
-	June 06, 2011	Initial Release:	Alan Laudani

NOTE: Nemko USA, Inc. hereby makes the following statements so as to conform to the Subclause 5.10 Requirements of ISO/IEC 17025 "General Criteria For the Competence Of Testing and Calibration Laboratories":

- o The unit described in this report was received at Nemko USA, Inc.'s facilities on May 13, 2011.
- Testing was performed on the unit described in this report on May 13, 2011 to May #, 2011.
- The Test Results reported herein apply only to the Unit actually tested, and to substantially identical Units.
- This report does not imply the endorsement of the Federal Communications Commission (FCC), NVLAP or any other government agency.

This Report is the property of Nemko USA, Inc., and shall not be reproduced, except in full, without prior written approval of Nemko USA, Inc. However, all ownership rights are hereby returned unconditionally to TDK-Lambda Americas Inc., and approval is hereby granted to TDK-Lambda Americas Inc. and its employees and agents to reproduce all or part of this report for any legitimate business purpose without further reference to Nemko USA, Inc.

Nemko USA,	Inc.	11696 Sorrente	valley Road, Suite F, San Dieg Phone (858) 755-5525 - Fax (8	/
DATE	DOCUMEN	Г NAME	DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	v of 87

CERTIFICATION

The compatibility testing and this report have been prepared by Nemko USA, Inc., an independent electromagnetic compatibility consulting and test laboratory.

Testing and data collection were accomplished in accordance with the test methods listed in this report.

I certify the data evaluation and equipment configuration herein to be a true and accurate representation of the sample's test characteristics, as of the test date(s), and for the design of the test sample utilized to compile this report.

Can Fandam

Alan Laudani, EMC/RF TEST ENGINEER

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT	Г NAME	DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	6 of 87

1. ADMINISTRATIVE DATA AND TEST SUMMARY

1.1. Administrative Data

CLINET:	TDK-Lambda Americas Inc. 3055 Del Sol Blvd San Diego, CA 92154 (619) 628-2844
Contact: E-Mail:	Phong Ly phong.ly@us.tdk-lambda.com
DATES OF TESTING:	May 13, 2011 to June 03, 2011
EQUIPMENT UNDER TEST (EUT):	Power supply for building-in
MODEL:	CPFE1000F-28
SERIAL NUMBER:	CLW-132S17-0008 S490
HIGHEST FREQUENCY GENERATED OR USED:	200 кНz
CONDITION UPON RECEIPT:	Suitable for Test
TEST SPECIFICATIONS:	Radio Frequency Emissions in accordance with requirements of EN 55022: 2006/A1: 2007.
	Electromagnetic Immunity tests in accordance with requirements of EN 55024: 1998/A1: 2001/A2: 2003/IS1: 2007

Nemko USA	A, Inc.		Valley Road, Suite F, San Dieg Phone (858) 755-5525 - Fax (8	/
DATE	DOCUMENT	Г NAME	DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	7 of 87

1.2. Referenced Standards for Radiated Emissions

Test Type	In Accordance with Document	Document Title
Conducted and Radiated Emissions	EN 55022: 2006/A1: 2007	Information technology equipment—Radio disturbance characteristics —Limits and methods of measurement

1.3. Referenced Standards for Electromagnetic Compatibility

Test Type	In Accordance with Document	Document Title
Power Line Harmonics	EN 61000-3-2: 2006	Electromagnetic Compatibility, Limits for Harmonic Current Emissions, Equipment Input Current $\leq 16A$
Power Line Flicker	EN 61000-3-3: 2008	Electromagnetic Compatibility, Limitation of Voltage Fluctuations and Flicker In Low-Voltage Supply Systems for Equipment with Rated Current $\leq 16A$
Electrostatic Discharge Immunity	IEC 61000-4-2: 2008	Electromagnetic Compatibility—Testing and measurement techniques - Electrostatic discharge immunity test
Radio Frequency Immunity	IEC 61000-4-3: 2006	Electromagnetic Compatibility—Testing and measurement techniques - Radiated radio frequency electromagnetic field immunity test
Electrical Fast Transient Burst Immunity	IEC 61000-4-4: 2004	Electromagnetic Compatibility—Testing and measurement techniques - Electrical fast transient / burst immunity
Power Line Surge Immunity	IEC 61000-4-5: 2005	Electromagnetic Compatibility—Testing and measurement techniques - Surge immunity test
RF Common Mode Immunity	IEC 61000-4-6: 2008	Electromagnetic Compatibility—Testing and measurement techniques - Immunity to conducted disturbances, induced by radio-frequency fields
Power Frequency Magnetic Field	IEC 61000-4-8: 2009	Electromagnetic Compatibility—Testing and measurement techniques - for Power Frequency Magnetic Field, Immunity Test
Voltage Dips and Short Interruptions Immunity	IEC 61000-4-11: 2004	Electromagnetic Compatibility—Testing and measurement techniques - Voltage dips, short interruptions and voltage variations immunity tests
Ring wave immunity test	IEC 61000-4-12: 2006	Electromagnetic Compatibility—Testing and measurement techniques - Ring wave immunity test
Voltage fluctuation immunity test	IEC 61000-4-14: 1999 + A1:2004	Electromagnetic Compatibility—Testing and measurement techniques - Voltage fluctuation immunity test

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	8 of 87

1.4. Test Summary

1.4.1. Emissions Test Summary

The Compliance Status is a judgment based on the calculated highest emissions to appropriate standard limits. Measurement uncertainty values, provided on calibration certificates, were not be used in the judgment of the final status of compliance.

Test Methods	Frequency Range	Compliance Status
EN 55022: 2006/A1: 2007 , Class " B " Conducted Emissions	0.15 MHz – 30 MHz	PASS
EN 55022: 2006/A1: 2007, Class "B" Telecom Conducted Emissions	0.15 MHz – 30 MHz	No telecom ports. Not applicable
EN 55022: 2006/A1: 2007 , Class " B " Radiated Emissions	30 MHz – 1000 MHz	PASS
EN 61000-3-2: 2006 Power Line Harmonics	up to the 40 th Harmonic	PASS
EN 61000-3-3: 2008 Power Line Flicker	less than or equal to 4% Maximum Relative Voltage Change; Value of D(T) less than or equal to 3% for more than 200 ms	PASS

Can Jandam

Alan Laudani, EMC/RF Test Engineer.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	9 of 87

1.4.2. Immunity Test Summary

Test Methods	Minimum Criterion Level Required as per EN 55024	Criterion Level Tested as per customer requested	Compliance Status
IEC 61000-4-2: 2008 - ESD Immunity	Criterion B ± 8 kV Air discharge, ± 4 kV Contact discharge	Criterion B $\pm 8 \text{ kV}$ Air Discharge, $\pm 4 \text{ kV}$ Contact Discharge	PASS
IEC 61000-4-3: 2006 - Radio Frequency Immunity	Criterion A 3 V/m from 80-1000 MHz (80% AM at 1kHz)	Criterion A 10 V/m from 80-1000 MHz (80% AM at 1kHz)	PASS
IEC 61000-4-4: 2004 -Electrical Fast Transient Immunity	Criterion B Power Line Pulses of \pm 1 kV; I/O Line Pulses of \pm 0.5 kV	Criterion B Power Line Pulses of $\pm 2 \text{ kV}$; I/O Line Pulses of $\pm 1 \text{ kV}$	PASS
IEC 61000-4-5: 2005 -Surge Immunity	Criterion B ± 2kV Common mode surges, ± 1kV Differential mode surges	Criterion B ± 4 kV Common Mode Surges, ± 2 kV Differential Mode Surges	PASS
IEC 61000-4-6: 2008 -RF Common Mode Immunity	Criterion A 150 kHz - 80 MHz at 3 Vrms 1 kHz 80% amplitude modulated	Criterion B 150 kHz - 80 MHz at 10 Vrms 1kHz 80% amplitude modulated	PASS*
IEC 61000-4-8: 2009 Power Frequency Magnetic Field	Criterion A Inductive loop at 50 Hz, to 1.0 amps (rms) per meter	Criterion A Inductive loop at 50 Hz, to 30 amps (rms) per meter	PASS
IEC 61000-4-11: 2004 - Voltage Dips and Short Interruptions	Criterion B and C Voltage Dips of 30% and >95%; Interruptions of >95%.	Criterion B and C Voltage Dips of 60%, 30%, 20% and >95%; Interruptions of >95%.	PASS
MIL STD 461/462D CE102.			PASS
IEC 61000-4-12: 2006 - Oscillatory waves immunity	N/A	Criterion A ± 2kV common mode ring ± 1kV differential mode ring	PASS
IEC 61000-4-14: 1999 + A1:2004 - Voltage fluctuation immunity	N/A	Criterion A $\Delta U = \pm 12\% U_n$ $\Delta U = \pm 12\% U_n$ $\Delta U = -12\% U_n$	PASS

* Customer upon agreed to lower the criteria, which the EUT is self-recoverable during the test. Refer to result section for detail information.

Refer to the test results section for further details.

Alan Fandami

Alan Laudani, EMC/RF Test Engineer

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	10 of 87

2. SYSTEM CONFIGURATION

2.1. System Components and Power Cables

DEVICE	MANUFACTURER MODEL # SERIAL #	POWER CABLE
EUT - Power supply for building-in with 28VDC output	TDK-Lambda Americas Inc. CPFE1000F-28 CLW-132S17-0008 S490	1m, unshielded, 16AWG, 3- wire, IEC connector
Support – Heat sink	N/A	None
Support – 0.8Ω resistor load for 28VDC output model	Custom made	None

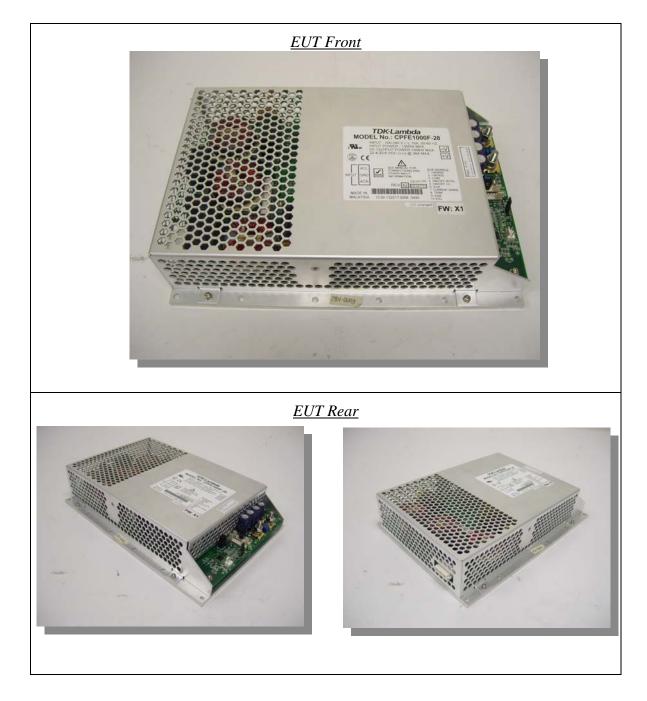
2.2. Device Interconnection and I/O Cables

Connection	I/O Cable
EUT to resistor loads	< 1m, unshielded, 8AWG cables

2.3. Description and Method of Exercising the EUT

The CPFE1000F-28 is a Power supply for building-in. Their function is to supply 28VDC output, respectively. The EUT was exercised with resistors load 0.8 Ω on the output connections. The load is considered as maximum condition. The EUT has been monitored DC voltages by a multimeter; if the DC voltage is disrupted as seen/indicated by meter ±56mV, or there is loss of functionality, this may be considered a failure.

2.4. Design Modifications for Compliance


Device: Power supply for building-in *Model:* CPFE1000F-28

The following design modifications were made to the EUT during testing.

None. No design modifications were made to the EUT during testing.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	11 of 87

Photograph 1. EUT Front and Rear of 28VDC output model

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	une 06, 2011 TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	12 of 87

3. DESCRIPTION OF TEST SITE AND EQUIPMENT

3.1. Description of Test Site

The test site is located at 11696 Sorrento Valley Road, Suite F, San Diego, CA 92121. The site is physically located 18 miles Northwest of downtown San Diego. The general area is a valley 1.5 miles east of the Pacific Ocean. This particular part of the valley tends to minimize ambient levels, i.e. radio and TV broadcast stations and land mobile communications. The three and ten-meter Open Area Test Site (OATS) is located behind the office/lab building. It conforms to the normalized site attenuation limits and construction specifications as set in the EN 55022: 2006/A1: 2007, CISPR 16: 2003 and ANSI C63.4: 2009 documents.

3.2. Facility Accreditation and Authorization

Registrations of the facility sites are on file with:

Organization	Registration numbers	
Federal Communications Commission	0013750831	
VCCI	R-3027 (Radiated) and C-3352 (Conducted)	
Industry Canada	2040B-1 and 2040B-2	

4. DESCRIPTION OF TESTING METHODS

4.1. Introduction

Nemko USA, Inc. is accredited to ISO/IEC 17025 by the National Voluntary Laboratory Accreditation Program (NVLAP) for Electromagnetic Compatibility and Telecommunications testing. Part of the accreditation process involves the demonstration of competence in various test methods.

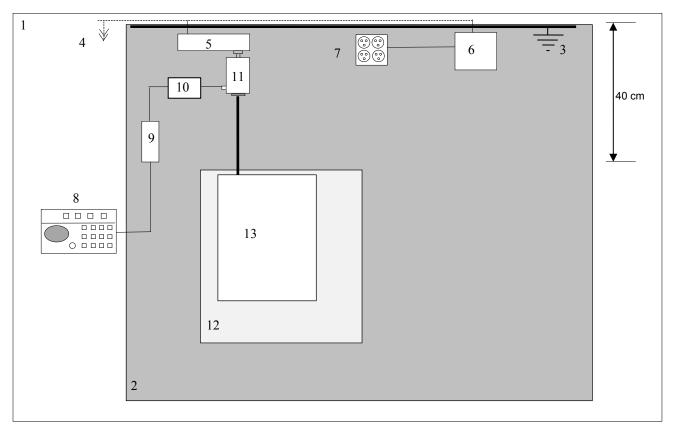
Prior to the beginning of work, Nemko personnel work with their clients to ensure the proper test standards and test methods are utilized. Applicable tests and the minimum criteria for a pass condition are listed in the administrative section of this report.


4.2. Test Methods

The harmonized documents published for Information Technology Equipment are **EN 55022: 2006/A1: 2007** for radio frequency emissions and **EN 55024: 1998/A1: 2001/A2:** 2003/IS1: 2007 for electromagnetic immunity. The methods employed to test the emissions and immunity characteristics of the Equipment Under Test are those mandated by the European Standards EN 55022 and EN 55024. The applicable tests and the minimum criteria for a pass condition that are listed in the administrative section of this report are taken from these standards.

Digital devices sold in Canada are required to comply with the Interference Causing Equipment Standard for Digital Apparatus, ICES-003, Issue 4. These test methods and limits are specified in the Canadian Standards Association's Standard CAN/CSA-CISPR 22-02 and are "essentially equivalent" with the CISPR 22 (EN55022) rules for unintentional radiators per EMCAB-3, Issue 4 (December 2005). No additional testing is required for compliance to ICES-003.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	13 of 87


Photograph 2. General EUT Test Configuration of 28VDC output model

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	14 of 87

4.3. Configuration and Methods of Measurements for Conducted Emissions

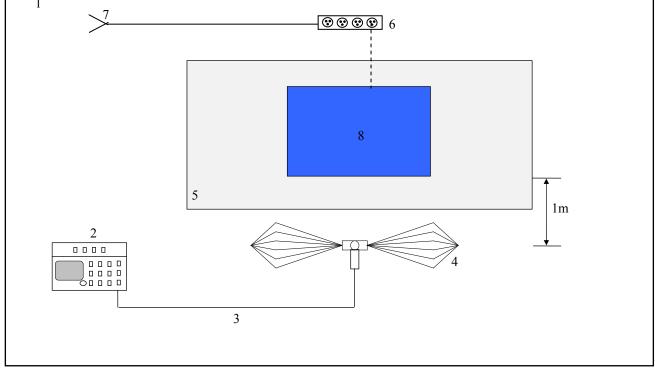
This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices. Testing was performed in accordance with the test standard(s) referenced in the test summary section of this report. The Equipment Under Test (EUT) was configured based upon the requirements of the applicable test standard.

Figure 1. Conducted Emissions Test Setup Diagram

NOT TO SCALE

- 1. Test Laboratory (6 X 6 meters)
- 2. Ground Plane (15 square meters)
- 3. Vertical Conducting Wall (Grounded through Ground Plane via 10' ground rod)
- 4. AC Power for Devices
- 5. Power Line Filter, Lindgren, 120 dB, 30 amp
- 6. Artificial Mains Network (AMN) for peripheral devices
- 7. Power Distribution Box for peripheral devices
- 8. Spectrum Analyzer with Quasi-Peak Adapter
- 9. High Pass Filter
- 10. Coax input from EUT AMN to Spectrum Analyzer
- 11. AMN for EUT
- 12. Non-conducting table
- 13. EUT and Associated System

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810			
DATE	DOCUMENT NAME		DOCUMENT #	PAGE	
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	15 of 87	


4.4. Configuration and Methods of Measurements for Frequency Identification

When performing all testing of equipment, the actual emissions of the EUT are segregated from ambient signals present within the laboratory or the open-field test range. Preliminary testing is performed to ensure that ambient signals are sufficiently low to allow for proper observation of the emissions from the EUT. Incoming power lines are filtered using a 120 dB, 30-ampere; 115/208-volt filter to assist in reducing ambient signals for tests of levels of conducted emissions. Ambients within the laboratory are compared to those noted at the nearby open-field site to discriminate between signals produced from the EUT and ambient signals. In the event that a significant emission is produced by the EUT at a frequency which is also demonstrating significant ambient signals, the spectrum analyzer is placed in the peak mode, the bandwidth is narrowed, the EUT's signal is centered on the analyzer, the scan width is expanded to 50 kHz while monitoring the audio to ensure that only the EUT signal is present, the analyzer is switched to quasi-peak mode, and the level of the EUT signal is recorded.

For Frequency ID Test Configuration please refer to the figure on the following page.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	16 of 87

NOT TO SCALE

- 1. Test Laboratory
- 2. Spectrum Analyzer with Quasi-Peak Adapter
- 3. Coax interconnect from Antenna to Spectrum Analyzer
- 4. Receive Antenna (basic relative position)
- 5. Non-Conducting table 80 cm above ground plane
- 6. Power strip for EUT and peripherals
- 7. AC power for devices
- 8. EUT: Power supply for building-in and Associated System

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810			
DATE	DOCUMENT NAME		DOCUMENT #	PAGE	
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	17 of 87	

4.5. Configuration and Methods of Measurements for Radiated Emissions

This test measures the levels emanating from the EUT, thus evaluating the potential for the EUT to cause radio frequency interference to other electronic devices. Testing was performed in accordance with the test standard(s) referenced in the test summary section of this report. The Equipment Under Test (EUT) was configured based upon the requirements of the applicable test standard. Initially, the primary emission frequencies are identified inside a shielded chamber by positioning a broadband receive antenna one meter from the EUT. Next, the EUT and associated system are placed on a turntable on a ten-meter open area test site (OATS) with known attenuation characteristics and all significant radiated emissions are recorded. To ensure that the maximum emission at each discrete frequency of interest is observed, the receive antenna is varied in height from one to four meters and rotated to produce horizontal and vertical polarities while the turntable is rotated to determine the worst emitting configuration. The numerical results are included herein to demonstrate compliance. The numerical results of the test are included herein to demonstrate compliance.

The numerical results that are applied to the emissions limits are arrived as demonstrated by the example below:

Α	В	С	D	Е	F	G	Н	Ι	J	К
Meas.	Meter	Meter	Det.	EUT	Ant.	Max.	Corrected	Spec.	CR/SL	Pass
Freq.	Reading	Reading		Side	Height	Reading	Reading	limit	Diff.	Fail
(MHz)	Vertical	Horizontal		F/L/R/B	m	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)	
47.2	44.5	44.6	Q	-	1.0	44.6	24.2	30.0	-5.8	Pass

A. Frequency Measured in MHz.

B. Meter Reading: Emission Amplitude as measured with the antenna in Vertical polarity in $dB\mu V$, this is from the EMI receiver or Spectrum Analyzer.

C. Meter Reading: Emission Amplitude as measured with the antenna in Horizontal polarity in $dB\mu V$, this is from the EMI receiver or Spectrum Analyzer.

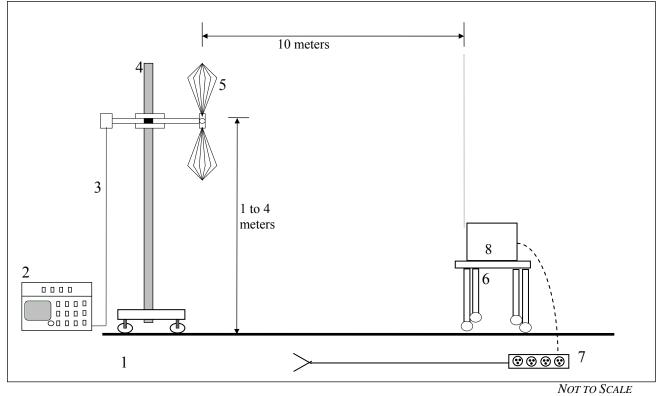
D. Detector used: Q for Quasi-Peak, A for average, P for peak.

E. EUT Side F/L/R/B: Side of EUT facing the receiving antenna. <u>Front</u>, <u>Left</u>, <u>Right</u>, <u>Back</u>. If not noted, emission did not peak in a significant manner to discriminate which side of the EUT emitted the emission.

F. Ant. Height m: Antenna height in meters of strongest emission measured when raised from 1 to 4 meters.

G. Max Reading: Max meter reading of B vertical and C horizontal in dBµV.

H. Corrected Reading: Corrected Reading in $dB\mu V/m$; Max Reading corrected for cable loss (dB), antenna factor (dBV/m) and preamplifier gain (dB).


I. Spec limit: Specification Limit at the measured frequency in $dB\mu V/m$.

J. CR/SL Diff.: Difference in dB of Corrected Reading and Specification Limit, negative results indicate a margin value below the specification limit.

K. Pass Fail: Result; EUT does or does not comply at this frequency.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	18 of 87

- 1. Ground plane (11 X 17 meters)
- 2. Spectrum Analyzer with Quasi-Peak Adapter
- 3. Coax interconnect from Receive Antenna to Spectrum Analyzer
- 4. Antenna Mast with motorized mounting assembly
- 5. Receive Antenna (basic relative position)
- 6. Non-Conducting table 80 cm above ground plane
- 7. Mains power for devices
- 8. EUT and Associated System

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	19 of 87

4.6. Power Line Harmonics: EN 61000-3-2: 2006

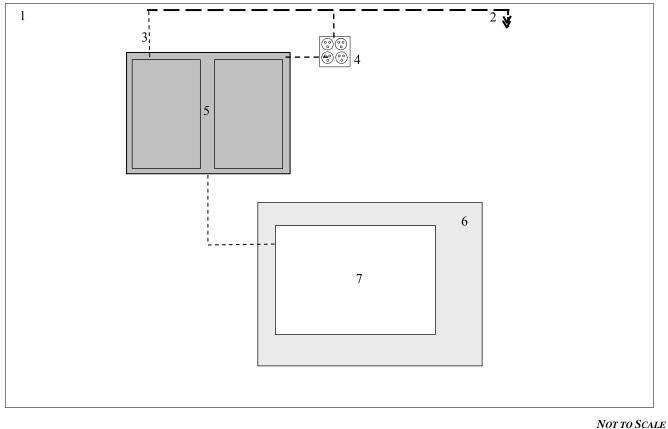
This test evaluates the potential for the EUT to cause distortion on the AC power lines. Testing was performed in accordance with EN 61000-3-2. It is applicable to electrical and electronic equipment having an input current up to and including 16 amps per phase, and intended to be connected to public low-voltage distribution systems.

Basic requirements of the AC source include $a \pm 2\%$ voltage regulation and $a \pm 0.5\%$ frequency limit. A low distortion sine wave output is required to ensure that the AC source does not adversely contribute distortion to the load, meeting the following limits:

- \circ 0.9% for 3rd order harmonics
- \circ 0.4% for 5th order harmonics
- \circ 0.3% for 7th order harmonics
- \circ 0.2% for 9th order harmonics
- 0.2% for even harmonics of order 2 to 10
- 0.1% for odd harmonic order from 11 to 40

For further information, please refer to the technical sections in the EN 61000-3 in addition to the test results section and photographs of the test set-up provided in this report.

4.7. Power Line Fluctuations/Flicker: EN 61000-3-3: 2008


Testing was performed in accordance with EN 61000-3-3. It is applicable to household appliances and similar electrical and electronic equipment having an input current up to and including 16 amps per phase. The objective of this standard is to set limits for voltage fluctuations of equipment within its scope, and ensures that home appliances and certain other electrical equipment do not adversely affect lighting equipment when connected to the same utility power line. Large current variations combined with high utility line power impedance can cause excessive changes in the AC supply voltage. If these voltage changes are repeated at short intervals, objectionable fluctuations of luminance (flicker) could be generated in illumination sources connected to the same utility line network.

This test requires an AC power source with a standard impedance network and a power analyzer. Measurements of steady state and fluctuating harmonics, along with flicker and voltage deviations, are conducted using a power analyzer, often called a "flickermeter."

For further information, please refer to the technical sections in the EN 61000-3-3 in addition to the test results section and photographs of the test set-up provided in this report.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	20 of 87

Figure 4. Harmonics & Flicker Test Setup Diagram

- 1. Test Laboratory (6 X 6 meters)
- 2. AC Power for Devices
- 3. 120/208VAC/60Hz Power for Harmonics/Flicker Test Equipment
- 4. 115V/60 Hz Power Distribution Box
- 5. Power Source Rack with Computer Analysis System
- 6. Non-conducting table
- 7. EUT and Associated System

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	21 of 87

4.8. Device Performance Criteria for Immunity Tests

- **Criterion A** The equipment shall continue to operate as intended without operator intervention. No degradation of performance or loss of function is allowed below a performance level specified by the manufacturer when the equipment is used as intended. The performance level may be replaced by a permissible loss of performance. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and by what the user may reasonably expect from the equipment if used as intended.
- **Criterion B** During the test, degradation of performance is allowed. However, no change of operating state or stored data is allowed to persist after the test. After the test, the equipment shall continue to operate as intended without operator intervention. The performance level may be replaced by a permissible loss of performance. If the manufacturer does not specify the minimal performance level (or the permissible performance loss), then either of these may be derived from the product description and documentation, or by what the user may reasonably expect from the equipment if used as intended.
- Criterion C Loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. Functions, and/or information stored in non-volatile memory, or protected by a battery backup, shall not be lost.

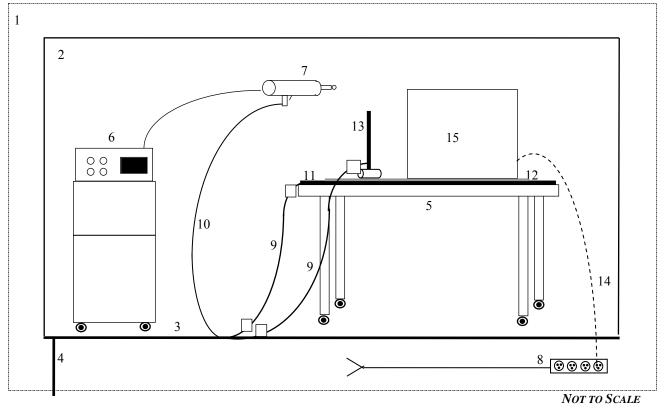
For each test method, the test standard specifies the appropriate criterion to be met.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810			
DATE	DOCUMENT NAME		DOCUMENT #	PAGE	
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	22 of 87	

4.9. Electrostatic Discharge Immunity: IEC 61000-4-2: 2008

This test simulates electrostatic events (similar to being "zapped" by touching a light switch) and evaluates the ability of the EUT to tolerate such events. Testing was performed in accordance with IEC 61000-4-2. Tabletop devices are placed on an insulated mat on a horizontal coupling plane. Air discharges and contact charges are made to the EUT on connectors and conducting surfaces (as illustrated in the Test Results section of this Test Report). The discharges shall be applied in two ways:

a) Contact Discharges to the conductive surfaces and to coupling planes:


The EUT shall be exposed to at least 200 discharges, 100 each at negative and positive polarity, at a minimum of four test points (a minimum of 50 discharges at each point). One of the test points shall be subjected to at least 50 indirect discharges (contact) to the center of the front edge of the horizontal-coupling plane. The remaining three test points shall each receive at least 50 direct contact discharges. If no direct contact test points are available, then at least 200 indirect discharges shall be applied in the indirect mode.

b) Air Discharge at slots and apertures, and insulating surfaces:

On those parts of the EUT where it is not possible to perform contact discharge testing, the equipment should be investigated to identify user accessible points where breakdown may occur. This investigation should be restricted to those areas normally handled by the user. A minimum of 10 single air discharges of each polarity and test level shall be applied to the selected test point for each area.

For further information, please refer to the technical sections in the IEC 61000-4-2 publication in addition to the test results section and photographs of the test set-up provided in this report.

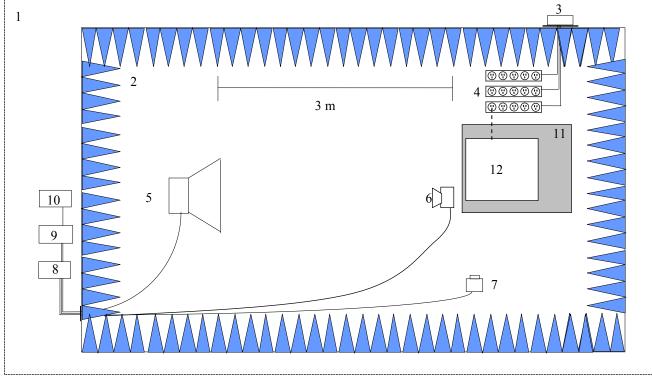
Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	23 of 87

Figure 5. ESD Test Setup Diagram

- 1. Test Laboratory (6 x 7 meters)
- 2. Vertical Conducting Wall (3 x 3 m, grounded)
- 3. Ground Plane (14 square meters), grounded to Grounding Rod
- 4. Ground Rod extending 3 m under ground plane
- 5. Non-Conducting table for ESD Simulator Control Box
- 6. ESD Simulator Control Box on cart
- 7. Electro-Static Discharge (ESD) Gun (hand held, grounded to grounding rod)
- 8. Mains power for devices
- 9. Ground strap with two 470 kOhm resistors
- 10. Grounding Strap
- 11. Horizontal Coupling Plane
- 12. Insulating Mat
- 13. Vertical Coupling Plane
- 14. EUT Power Cord
- 15. EUT and Associated System

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810			
DATE	DOCUMENT NAME		DOCUMENT #	PAGE	
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	24 of 87	

4.10.Radio Frequency Immunity: IEC 61000-4-3: 2006


This test bombards the EUT with electric fields that may couple into the system via chassis slots and interface cables and evaluates the product's immunity. Testing was performed in accordance with IEC 61000-4-3. The RF immunity test entails subjecting the equipment under test to a uniform field of radiated electromagnetic energy of a specified field strength and frequency, and monitoring the functionality of the device as the frequency is swept over a specified frequency range.

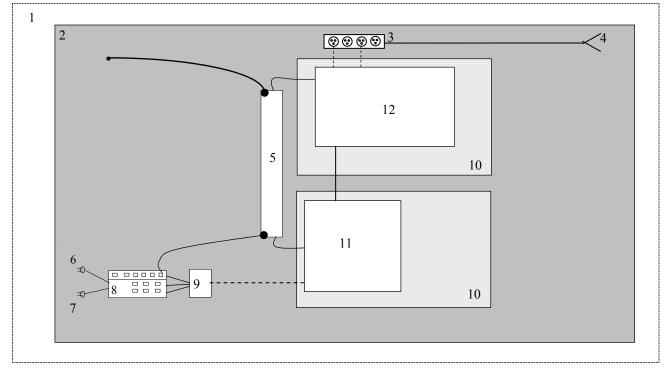
The EUT is set up inside a shielded, semi-anechoic chamber with a radiating antenna at a distance of 3 meters from the EUT. The antennas use for radiating have a VSWR characteristic of 2:1 or better, Per CISPR16.

For further information, please refer to the technical sections in the IEC 61000-4-3 publication in addition to the test results section and photographs of the test set-up provided in this report.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	25 of 87

NOT TO SCALE

- 1. Test laboratory
- 2. Shielded anechoic chamber (Anechoic absorber material on walls and ceiling; ferrite tiles on ceiling and floor)
- 3. Power Line filters and power distribution breaker box
- 4. Power strip for EUT and peripherals
- 5. Transmit antennas
- 6. E-Field sensor
- 7. Monitoring camera for EUT
- 8. Broadband power amplifiers
- 9. E-Field probe monitoring system
- 10. Signal Generators
- 11. Non-Conducting table
- 12. EUT and Associated System


Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	26 of 87

4.11.Electrical Fast Transient Immunity: IEC 61000-4-4: 2004

This test injects a transient/burst interference onto the AC/DC power supply and signal I/O lines. Testing was performed in accordance with IEC 61000-4-4. The standard configuration for "type tests" outlined in IEC 61000-4-4 is used. For further information, please refer to the technical sections in the IEC 61000-4-4 in addition to the test results section and photographs of the test set-up provided in this report.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	27 of 87

NOT TO SCALE

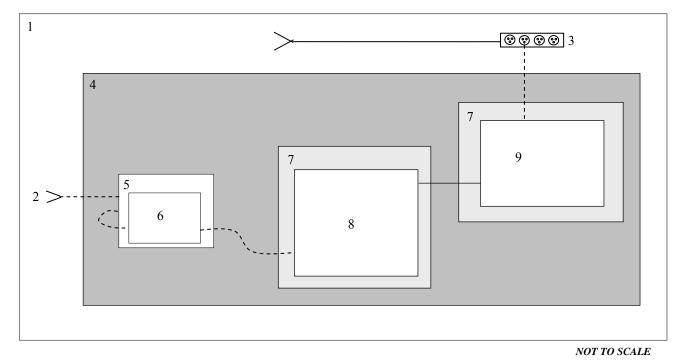
- 1. Test Laboratory (6 x 7 meters)
- 2. Ground Plane
- 3. Power Strip for Peripherals from power line filter
- 4. Mains Power for Devices
- 5. Capacitive Coupling Clamp (grounded)
- 6. Mains Power for EUT
- 7. AC Power for Fast Transient Noise Generator (120V)
- 8. Fast Transient Noise Generator
- 9. Coupling Network
- 10. 10cm Non-Conducting Platform
- 11. EUT
- 12. Associated System

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	28 of 87

4.12.Power Line Surge Immunity: IEC 61000-4-5: 2005

This test simulates a lightning event by inducing transients onto the AC/DC power supply lines in common and differential mode. Testing was performed in accordance with IEC 61000-4-5. Each device was tested in a total of three surge configurations:

Surge #1: Combination Wave, Line to Protective Earth with 9uF and 10Ohm, common mode, generator earthed.

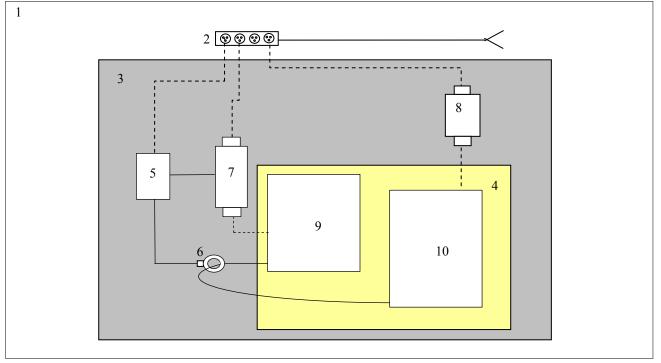

Surge #2: Combination Wave, Neutral to Protective Earth with 9uF and 10Ohm, common mode, generator earthed.

Surge #3: Combination Wave, Line to Neutral with 18uF, differential mode, generator floated.

For further information, please refer to the technical sections in the IEC 61000-4-5 in addition to the test results section and photographs of the test set-up provided in this report.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	29 of 87

- 1. Test Laboratory
- 2. AC power for Devices
- 3. Power strip for associated devices from power line filter
- 4. Copper Ground Plane
- 5. Surge Generator
- 6. Surge Coupling Network
- 7. Nonconductive tables 80cm above Ground Plane
- 8. EUT
- 9. Associated System


Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	30 of 87

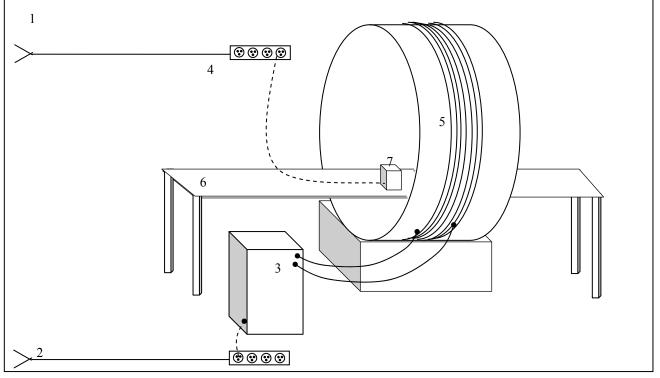
4.13. Radio Frequency Conducted Common Mode Immunity: IEC 61000-4-6: 2008

This test injects a disturbance directly onto AC/DC power and signal I/O cables. Testing was performed in accordance with IEC 61000-4-6. The standard configuration as outlined in the IEC 61000-4-6 was used. For further information, please refer to the technical sections of the IEC 61000-4-6 publication in addition to the test results section and photographs of the test set-up provided in this report.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	31 of 87

NOT TO SCALE

- Test Laboratory
 Mains power for EUT
- 3. Ground Plane
- 4. 10cm wooden Platform
- 5. Test Generator
- 6. Current Probe
- 7. Coupling/Decoupling Network
- 8. Coupling/Decoupling Network
- 9. EUŤ
- 10. Associated System


Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	32 of 87

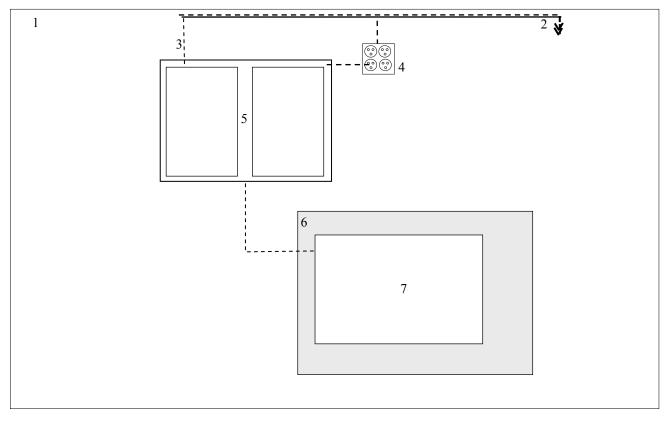
4.14. Power Frequency Magnetic Field Immunity: IEC 61000-4-8: 2009

This test subjects devices to the fields produced by current carrying conductors of standard building power. Testing was performed in accordance with IEC 61000-4-8. The standard configuration as outlined in IEC 61000-4-8 was used. For further information, please refer to the technical sections of IEC 61000-4-8 in addition to the test results section and photographs of the test set-up provided in this report.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	33 of 87

NOT TO SCALE

- 1. Test laboratory
- 2. AC Power for devices
- 3. AC Power Supply
- 4. Mains Power for EUT
- 5. Helmholtz Coil
- 6. Non-Conductive Table
- 7. EUT


Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	34 of 87

4.15. Voltage Dips and Short Interruptions: IEC 61000-4-11: 2004

This test subjects the EUT to power network faults and "brownouts". Testing was performed in accordance with IEC 61000-4-11. The standard configuration as outlined in the IEC 61000-4-11 was used. The EUT is powered up to a nominal voltage of 230 VAC 50 Hz, and then software-controlled voltage dips and interruptions are introduced. For further information, please refer to the technical sections of the IEC 61000-4-11 in addition to the test results section and photographs of the test set-up provided in this report.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	35 of 87

Figure 11. Voltage Dips and Short Interruptions Test Setup Diagram

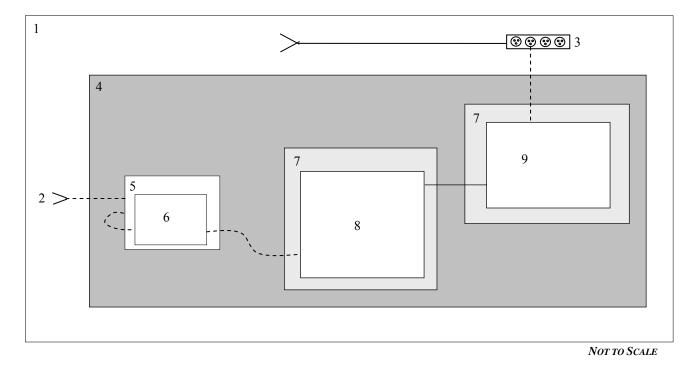
NOT TO SCALE

- 1. Test Laboratory (6 X 6 meters)
- 2. AC Power for Devices
- 3. 120/208VAC/60Hz Power for Harmonics/Flicker Test Equipment
- 4. 115V/60 Hz Power Distribution Box
- 5. Power Source Rack with Computer Analysis System
- 6. Non-conducting table
- 7. EUT and Associated System

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	36 of 87

4.16. Oscillatory Waves Immunity: IEC 61000-4-12: 2006

The standard relates to the immunity requirements, test methods, and range of recommended test levels for low voltage equipment to oscillatory waves / transients. The standard configuration as outlined in IEC 61000-4-12: 2006, section 8 was used.


Each device was tested in a total of three configurations:

- #1: Ring Wave, Line to Protective Earth with 12 Ohm, common mode, generator earthed.
- #2: Ring Wave, Neutral to Protective Earth with 12 Ohm, common mode, generator earthed.
- #3: Ring Wave, Line to Neutral with 12 Ohm, differential mode, generator floated.

For further information, please refer to the technical sections in the IEC 61000-4-12: 2006 in addition to the test results section and photographs of the test set-up provided in this report.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	37 of 87

Figure 12. Oscillatory Waves Immunity Test Setup Diagram

CONFIGURATION LEGEND

- 1. Test Laboratory
- 2. AC power for Devices
- 3. Power strip for associated devices from power line filter
- 4. Copper Ground Plane
- 5. Surge Generator
- 6. Surge Coupling Network
- 7. Nonconductive tables 80cm above Ground Plane
- 8. EUT
- 9. Associated System

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	38 of 87

4.17. Voltage Fluctuation Immunity: IEC 61000-4-14:1999 + A1:2004


The standard relates to the immunity requirements, test methods, and range of recommended test levels for low amplitude voltage fluctuations. The standard configuration as outlined in IEC 61000-4-14:1999 + A1:2004, section 5 was used.

Each device was tested in a level as customer requested as Class 3: $\Delta U = 12\% U_n$ for equipment connected to heavily disturbed networks (i.e. industrial networks).

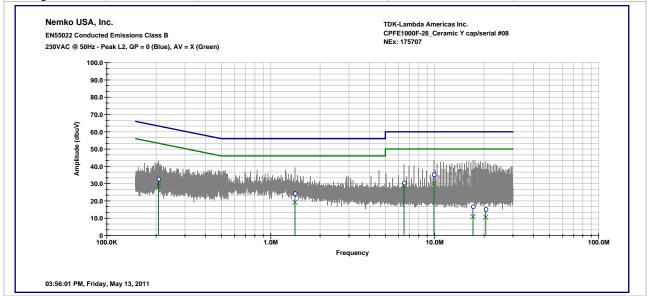
For further information, please refer to the technical sections in the IEC 61000-4-14:1999 + A1:2004 in addition to the test results section and photographs of the test set-up provided in this report.

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	39 of 87

CONFIGURATION LEGEND

- 1. Test Laboratory (6 X 6 meters)
- 2. AC Power for Devices
- 3. 120/208VAC/60Hz Power for Harmonics/Flicker Test Equipment
- 4. 115V/60 Hz Power Distribution Box
- 5. Power Source Rack with Computer Analysis System
- 6. Non-conducting table
- 7. EUT and Associated System

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	40 of 87


5. CE-mark Test Results

5.1. Conducted Emissions Test Data

Client	TDK-Lambda An	nericas inc.		Tempera		21	°C
Quote #:	1027254				Humidity	48	%
EUT Name	Power supply for	building-i	n	Baromet	ric Pressure	101.4	kPa
EUT Model	CPFE1000F-28	0 000 000 000 000 000		Test Loc	ation	Enclosure	: 1
Governing Doc	EN 55022			Test Eng		Alex Cha	
Basic Standard	CISPR 22			Date		May 13, 2	2011
Voltage:	230 Vac / 50Hz, I	Line 1					
230VAC @ 50Hz - F	C. d Emissions Class B eak L1, QP = 0 (Blue), AV = X (Gre	een)		TDK-Lambda Ame CPFE1000F-28_Ce NEx: 175707	ricas Inc. ramic Y cap/serial #08		
100.0 90.0							
80.0							
70.0							
<u> </u>							
뭘 50.0							
900 900 900 900 900 900 900 900 900 900							
30.0 20.0 10.0	المراجع المراجع المراجع المراجع		Frequence		1111 (1111) (111		
30.0 20.0 10.0					1111 (1111) (111		
30.0 20.0 10.0 0 10 04:06:14 PM, Friday	. May 13, 2011					argin	100.0
30.0 20.0 10.0 10	мау 13, 2011		Frequenc			argin Avera	
30.0 20.0 10.0 10 04:06:14 PM, Friday	May 13, 2011 Act Measurement of the formation of the for	sured	Frequenc	nit			.ge
30.0 20.0 10.0 04:06:14 PM, Friday Frequer (kHz	May 13, 2011 Icy Meas Quasi-Peak 40.1	sured Average	Frequence	nit Average	Ma Quasi-Peak	Avera	ge 3
30.0 20.0 10.0 04:06:14 PM, Friday 04:06:14 PM, Friday (kHz 199.1	мау 13, 2011 Ney May 13, 2011 Ney Meas Quasi-Peak 40.1 32.0	sured Average 35.3	Frequenc Quasi-Peak 63.6	nit Average 53.6	Ma Quasi-Peak -23.6	Avera -18.3	.ge 3 6
30.0 20.0 10.0 04:06:14 PM, Friday 04:06:14 PM, Friday 10 (kHz) 199.1 500.9	мау 13, 2011 Icy Meas Quasi-Peak 40.1 0 26.2	sured Average 35.3 26.4	Frequence Quasi-Peak 63.6 56.0	nit Average 53.6 46.0	Ma Quasi-Peak -23.6 -24.0	Avera -18.2 -19.0	ge 3 6 8
30.0 20.0 10.0 04:06:14 PM, Friday 04:06:14 PM, Friday 10 10 10 10 10 10 10 10 10 10 10 10 10	мау 13, 2011 NCY Meas) Quasi-Peak 40.1) 32.0 0 26.2 0 36.7	sured Average 35.3 26.4 20.2	Frequenc Lit Quasi-Peak 63.6 56.0 56.0	mit Average 53.6 46.0 46.0	Ma Quasi-Peak -23.6 -24.0 -29.8	Avera -18.2 -19.0 -25.8	.ge 3 6 8 7

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	41 of 87

Client	TDK-Lambda Americas Inc.	Temperature	21	°C
Quote #:	1027254	Relative Humidity	48	%
EUT Name		Barometric Pressure	101.4	kPa
	Power supply for building-in			
EUT Model	CPFE1000F-28	Test Location	Enclosure 1	
Governing Doc	EN 55022	Test Engineer	Alex Chang	
Basic Standard	CISPR 22	Date	May 13, 2011	
Voltage:	230 Vac / 50Hz, Line 2			

Frequency	Meas	sured	Lir	nit	Mar	gin
(kHz)	Quasi-Peak	Average	Quasi-Peak	Average	Quasi-Peak	Average
206.9	32.8	28.6	63.3	53.3	-30.5	-24.7
1404.0	24.4	19.2	56.0	46.0	-31.6	-26.8
6503.0	30.6	28.7	60.0	50.0	-29.4	-21.3
9871.0	35.3	30.0	60.0	50.0	-24.7	-20.0
17097.0	16.8	10.9	60.0	50.0	-43.2	-39.1
20469.0	15.3	10.6	60.0	50.0	-44.7	-39.4

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	42 of 87

Conducted Emissions Test Equipment					
Client	TDK-Lambda Americas Inc.	EUT Name			
			Power supply for building-in		
Quote #:	1027254	EUT Model	CPFE1000F-28		

Nemko ID	Device	Manufacturer	Model	Serial Number	Cal Date	Cal Due Date
E1018	Spectrum Analyzer	R & S	FSP7	835363/0003	Feb. 01, 2011	Feb. 01, 2012
684	Transient Limiter	HP	11974A	3107A02636	Sep. 10, 2010	Sep. 10, 2011
805	LISN	Solar	9348-50-R-24-BNC	992823	Feb. 07, 2011	Feb. 07, 2012

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810			
DATE	DOCUMENT NAME		DOCUMENT #	PAGE	
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	43 of 87	

5.2. Radiated Emissions Test Data

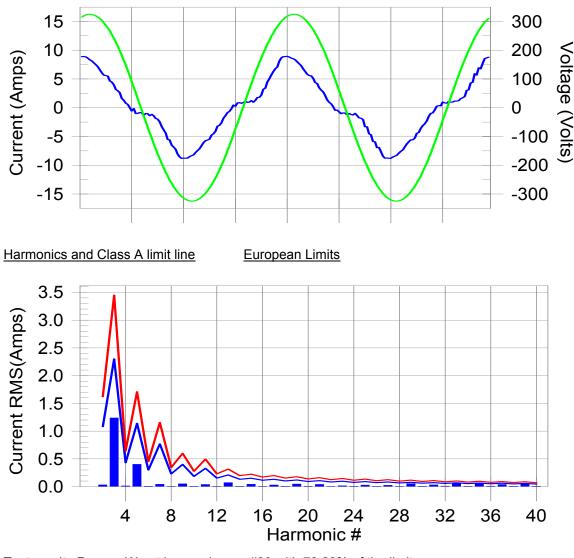
lah # .		4007054			Data i	E/40 and E/44	0	Dara	4	- 6	4	
Job # :		1027254		-		5/16 and 5/18	8	Page	1	- OT	1	
NEX #:		175707		-	Staff :	10:30am						
Client Nam	ne :	TDK-Lambda	a Amer	icas Inc.	Stall .	AU		EUT Vol	tage :			230
EUT Name		Power supply						EUT Fre	•	:		50
EUT Mode	#:	CPFE1000F		· J				Phase:	1			1
EUT Seria	#:	CLW-132S1		S490				NOATS				Х
EUT Confi	q.:	EUT with 0.8	ohm r	esistors I	oad			SOATS				
	•							Distance	< 1000	MHz:		10 m
								Distance	> 1000	MHz:		3 m
Specification	on :	EN55022: CI	ass B									
Loop Ant. #	#:	NA	_							Quasi-P	eak	RBW: 120 k
Bicon Ant.	#:	128_10m	-		np. (°C) :						Video E	Bandwidth 300 k
Log Ant.#:		755_10m			dity (%) :					Peak		RBW: 1 MH
DRG Ant. 7	-	NA			ec An.#:						Video E	Bandwidth 3 MH
Cable LF#		NOATS	Sp	ec An. D	isplay #:					Average)	RBW: 1 MH
Cable HF#	-	NA			QP #:	898/899					Video E	3andwidth 10 Hz
Preamp LF		NA		Pre	Select#:	N/A		Measurem	ents below 1	GHz are Q	uasi-Peak valu	es, unless otherwise s
Preamp HI	=#	NA	-					Measur	ements abov	ve 1 GHz are	e Average valu	es, unless otherwise s
Meas.	Meter	Meter	Det.	EUT	Ant.	Max.	Corrected	Spec.	CR/SL	Pass		
Freq.	Reading	Reading		Side	Height	Reading	Reading	limit	Diff.	Fail		
(MHz)	Vertical	Horizontal		F/L/R/B	m	(dBµV)	(dBµV/m)	(dBµV/m)	(dB)		Comment	
33.5	15.3	15.6	Q	R	2.5	15.6	29.3	30.0	-0.7	Pass	28V mode	
35.9	14.5	12.8	Q	R	1.5	14.5	29.3	30.0	-3.3	Pass	201 11000	1
67.2	14.3	7.3	Q	R	1.5	14.5	20.7	30.0	-3.3	Pass		
137.3	12.0	9.0	Q		1.0	10.2	24.8	30.0	-5.2	Pass	<u> </u>	
145.1	12.0	7.4	Q		1.0	12.4	24.0	30.0	-4.0	Pass		
150.9	13.2	8.8	Q		1.5	13.2	27.8	30.0	-2.2	Pass		
100.0	10.2	0.0	, s		1.0	10.2	21.0	00.0		1 400		

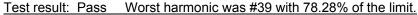
Nemko USA	A, Inc.		alley Road, Suite F, San Dieg Phone (858) 755-5525 - Fax (8	·
DATE	DOCUMENT	Г NAME	DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	44 of 87

	Radiated	l Emissions 7	Fest Equipment
Client	TDK-Lambda Americas Inc.	EUT Name	
			Power supply for building-in
Quote #	1027254	EUT Model	CPFE1000F-28

Nemko ID	Device	Manufacturer	Model	Serial Number	Cal Date	Cal Due Date
128	Bicon Antenna	EMCO	3104	2882	Mar. 21, 2011	Mar. 21, 2013
755	LPA Antenna	EMCO	3147	1246	Jul. 23, 2009	Jul. 23, 2011
898	EMI Receiver & filter set	HP	8546A	3625A00348	Jun. 22, 2010	Jun. 22, 2011
899	Filter Section	HP	85460A	3448A00288	Jun. 22, 2010	Jun. 22, 2011

Nemko USA	A, Inc.		Valley Road, Suite F, San Dieg Phone (858) 755-5525 - Fax (8	·
DATE	DOCUMENT	Г NAME	DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	45 of 87


5.3. Power Line Harmonics Test Results


Harmonics – Class-A per Ed. 3.2 (2009)(Run time)

EUT: Power supply for building-in
Test category: Class-A per Ed. 3.2 (2009) (European limits)
Test date: 5/17/2011Test dato (2009) (European limits)
Test duration (min): 30Test dato (2009) (European limits)
Data file name: H-000085.cts_dataTest Margin: 100
End time: 11:04:22 AMComment: 28VDC output model with 0.80hm resistor load
Customer: TDK-Lambda Americas Inc.Test dato (2009) (European limits)
Test Margin: 100Test Margin: 100
End time: 11:04:22 AM

Test Result: Pass Source qualification: Normal

Current & voltage waveforms

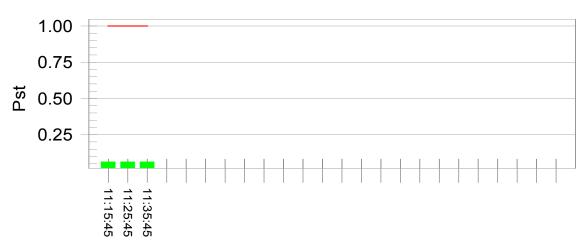
Nemko USA	A, Inc.		Valley Road, Suite F, San Dieg Phone (858) 755-5525 - Fax (8	/
DATE	DOCUMENT	Г NAME	DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	46 of 87

Current Test Result Summary (Run time)

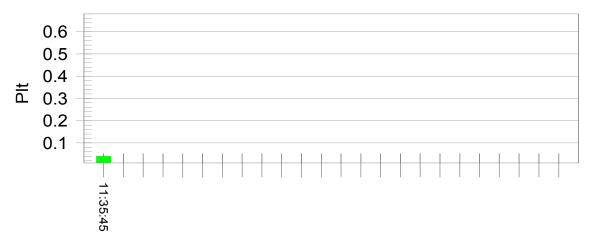
Test category: Class-A per Ed. 3.2 (2009) (European linTest date: 5/17/2011Start time: 10:34:01 ANTest duration (min): 30Data file name: H-0000Comment: 28VDC output model with 0.8ohm resistoCustomer: TDK-Lambda Americas Inc.	nits) Test Margin: 1 1 End time: 11:0 85.cts_data	
I_Peak (Amps): 9.047 I_RMS I_Fund (Amps): 5.070 Crest F	ency(Hz): 50.00 (Amps): 5.223	0.295
Harm# Harms(avg) 100%Limit %of Limit Harm	ns(max) 150%Limit	%of Limit Status
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1.97 Pass 35.84 Pass 1.82 Pass 23.49 Pass 1.81 Pass 3.70 Pass 2.12 Pass 7.95 Pass 1.41 Pass 23.38 Pass 1.41 Pass 23.38 Pass 1.50 Pass 1.81 Pass 15.00 Pass 4.57 Pass 26.36 Pass 3.08 Pass 2.58 Pass 10.04 Pass 4.65 Pass 18.41 Pass 4.05 Pass 46.68 Pass 9.70 Pass 6.49 Pass

Nemko USA, Inc.			11696 Sorrento	Valley Road, Suite F, San Dieg Phone (858) 755-5525 - Fax (8	
DATE	DOCUMEN	Г NAME		DOCUMENT #	PAGE
June 06, 2011 TD	K-Lambda Americas Inc	CPFE1000F-28 -	EMC Test Report	2011 06175707-2 EMC	47 of 87
EUT: Power supply f Test category: Class Test date: 5/17/2011 Test duration (min): 3 Comment: 28VDC o Customer: TDK-Lan	or building-in -A per Ed. 3.2 (2009) Start time 30 Data file output model with 0.) (European lii e: 10:34:01 Al name: H-000	mits) Test M M End tin 085.cts_data	time) by: Alex Chang argin: 100 ne: 11:04:22 AM	
Test Result: Pass	Source qualification	on: Normal			
Highest parameter v Voltage (Vrm I_Peak (Amp I_Fund (Amp Power (Watt	ns): 230.01 os): 9.047 os): 5.070	I_RMS Crest	ency(Hz): 50.00 6 (Amps): 5.22 Factor: 1.77 Factor: 0.964	3 3	
Harm# Harm	onics V-rms Lir	mit V-rms	% of Limit	Status	
$ \begin{array}{c} 2 \\ 3 \\ 4 \\ 5 \\ 6 \\ 7 \\ 8 \\ 9 \\ 10 \\ 11 \\ 12 \\ 13 \\ 14 \\ 15 \\ 16 \\ 17 \\ 18 \\ 19 \\ 20 \\ 21 \\ 22 \\ 23 \\ 24 \\ 25 \\ 26 \\ 27 \\ 28 \\ 29 \\ 30 \\ 31 \\ 32 \\ 33 \\ 34 \\ 35 \\ 36 \\ 37 \\ 38 \\ 39 \\ 40 \\ \end{array} $	0.085 0.514 0.075 0.256 0.042 0.082 0.023 0.075 0.012 0.047 0.023 0.052 0.011 0.042 0.007 0.023 0.021 0.039 0.015 0.032 0.008 0.016 0.021 0.040 0.011 0.037 0.012 0.040 0.011 0.037 0.012 0.080 0.021 0.040 0.011 0.037 0.012 0.080 0.021 0.040 0.021 0.040 0.021 0.040 0.021 0.040 0.021 0.040 0.021 0.040 0.021 0.040 0.021 0.040 0.021 0.033 0.020 0.020 0.020 0.020 0.020 0.020 0.021 0.020 0.020 0.021 0.020 0.020 0.021 0.020 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.021 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.020 0.023 0.023 0.023 0.023 0.025 0.025	0.460 2.070 0.460 0.920 0.460 0.460 0.460 0.230 0	$18.54 \\ 24.84 \\ 16.37 \\ 27.84 \\ 9.19 \\ 11.92 \\ 5.05 \\ 16.32 \\ 2.56 \\ 20.56 \\ 9.89 \\ 22.82 \\ 4.72 \\ 18.23 \\ 2.85 \\ 9.79 \\ 9.09 \\ 16.80 \\ 6.47 \\ 14.01 \\ 3.29 \\ 6.84 \\ 9.26 \\ 17.22 \\ 4.59 \\ 16.22 \\ 5.06 \\ 34.89 \\ 8.79 \\ 21.10 \\ 9.07 \\ 41.32 \\ 8.68 \\ 41.09 \\ 14.21 \\ 41.26 \\ 10.21 \\ 44.17 \\ 11.03 \\ 1.03 \\$	OK OK OK OK KK KK KK KK KK KK KK KK KK K	

Nemko USA	A, Inc.		Valley Road, Suite F, San Dieg Phone (858) 755-5525 - Fax (8	/
DATE	DOCUMENT	Г NAME	DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	48 of 87


Flicker Test Summary per EN/IEC61000-3-3 (Run time)

EUT: Power supply for building-inTested by: Alex ChangTest category: All parameters (European limits)Test Margin: 100Test date: 5/17/2011Start time: 11:05:25 AMEnd time: 11:35:46 AMTest duration (min): 30Data file name: F-000086.cts_dataComment: 28VDC output model with 0.80hm resistor loadCustomer: TDK-Lambda Americas Inc.


Test Result: Pass

Status: Test Completed

Pst_i and limit line

Plt and limit line

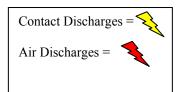
Parameter values recorded during the test:Vrms at the end of test (Volt):228.39Highest dt (%):0.00Time(mS) > dt:0.0Highest dc (%):0.00Highest dmax (%):0.00Highest Pst (10 min. period):0.064Highest Plt (2 hr. period):0.040

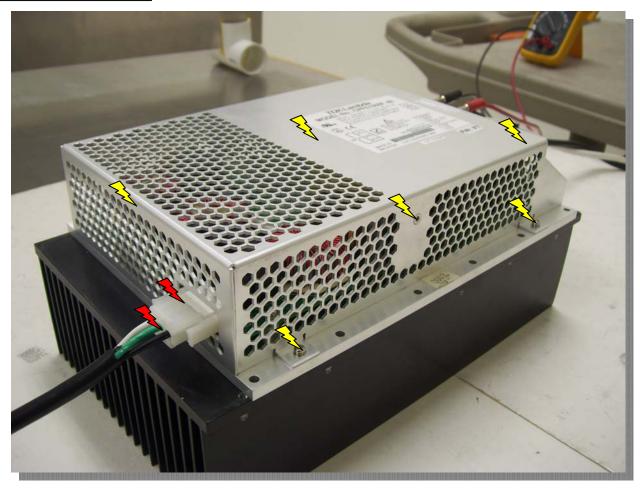
Test limit (%):	3.30	Pass
Test limit (mS):	500.0	Pass
Test limit (%):	3.30	Pass
Test limit (%):	4.00	Pass
Test limit:	1.000	Pass
Test limit:	0.650	Pass

European Limits

Nemko USA	A, Inc.		Valley Road, Suite F, San Dieg Phone (858) 755-5525 - Fax (8	,
DATE	DOCUMENT	Г NAME	DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	49 of 87

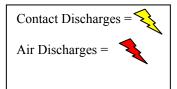
Client	TDK-	Lambda Americas Inc.			Tempera	ture	23	°C
Quote #:	102725	54			Relative	Humidity	46	%
EUT Name	Power	supply for building-in			Baromet	ric Pressure	101.7	kPa
EUT Model	CPFE	1000F-28			Test Loc	ation	West G	round Plane 2
					Test Eng	ineer	Alex Cl	nang
					Date		May 17	, 2011
C	v	TEC/EN (1000						
Governing Doc Basic Standard Test Voltage		IEC/EN 61000 IEC 61000-3-2 230VAC @ 50Hz	X	IEC 610	C @ 60Hz		61000-4-2 AC @ 6(
	X X	IEC 61000-3-2	X Used	IEC 610 120VA0	000-3-3	220V		
<u>Basic Standard</u> <u>Test Voltage</u> <u>Equipment Use</u>	X X d	IEC 61000-3-2 230VAC @ 50Hz		IEC 610 120VA0	000-3-3 C @ 60Hz	220V	AC @ 60	OHz
<u>Basic Standard</u> <u>Test Voltage</u>	X X d ments A	IEC 61000-3-2 230VAC @ 50Hz AC Power	Used	IEC 610 120VA0	000-3-3 C @ 60Hz <u>Asset #</u>	220V	AC @ 60 Done 1, 2011)Hz <u>Cal Due</u>


Nemko USA	A, Inc.		alley Road, Suite F, San Dieg Phone (858) 755-5525 - Fax (8	/
DATE	DOCUMENT	NAME	DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	50 of 87


5.4. Electrostatic Discharge Immunity Test Results & Test Points

Client:		TDK-La	ımbda	Americas Inc.			Temperature:	23	°C
Quote #:		1027254	ŀ				Relative Humidity:	38	%
EUT Name	e:	Power su	pply fo	r building-in			Barometric Pressure	: 100.9	kPa
EUT Mode	el:	CPFE10					Test Location	ESD Ro	om
Governing	Doc:	EN 5502	24				Test Engineer	Alex Ch	ang
Basic Stan	dard:	IEC 610	00-4-2				Date:	May 24,	2011
Voltage:		230VAC							
Discharge	Rep. Rat	te	Х	> 1 per second					
Number of			Х	> 10 per locatio	on				
		0			uipment	Used			
Device Typ	<i>pe</i>			Model #	Asset #	Used	Cal Done	C	al Due
ESD Gun,		er]	NSG 435	818	Х	Jul. 06, 2010	Jul.	06, 2011
Multimeter	, Fluke			111	815	Х	Aug. 04, 2010	Aug.	04, 2011
				Cor	ıtact Disc	harge			
Voltage	Р	olarity		т.,:			LICD	110	
(kV)	Pos	Ne	g	Location	IS		НСР	VC	P
2	Х	X	-	\triangleleft			Х	Х	[
4	Х	X					Х	Х	
Comments	: No sus	ceptibility	y noted	1.					
				A	ir Discha	rge			
Voltage	F	Polarity				8-	"Spark" even	locations	
(kV)	Pos		g	Location	IS		~		
2	X	X	-	-					
4	X	X							
8	X	X							
				d.					
8 Comments				d.					

Nemko USA	A, Inc.		alley Road, Suite F, San Dieg Phone (858) 755-5525 - Fax (8	· ·
DATE	DOCUMENT	Г NAME	DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	51 of 87


Figure 14. ESD Test Points

Nemko USA	A, Inc.		Yalley Road, Suite F, San Dieg Phone (858) 755-5525 - Fax (8	/
DATE	DOCUMENT	Г NAME	DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	52 of 87

Figure 15. ESD Test Points

Nemko USA	A, Inc.		Valley Road, Suite F, San Dieg Phone (858) 755-5525 - Fax (8	·
DATE	DOCUMENT	Г NAME	DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	53 of 87

5.5. Radio Frequency Immunity Test Results

Client:	TD	K-La	ambda Ame	ericas In	c.			Ten	nperature:	23	°C			
Quote #:	102	7254	1					Rel	ative Humidity:	46	%			
EUT Name:	Pow	er su	pply for bui	lding-in					ometric Pressure:	101.7	kPa			
EUT Model:			00F-28						t Location	Anechoic Chamber				
Governing Doc:	EN							Tes	t Engineer	Alex Cha				
Basic Standard:			00-4-3					Dat	e:	May 14, 2	2011			
Voltage:	230	VAC	C/ 50Hz											
					-	reat Levels								
Frequency (MHz)):		27-500	Х	80-10				-1000	80-250				
Test Level:			1V/m		3V/m		Х		V/m	200V/n	ı			
Modulation:			None (CW	/) X		AM, 1kHz		50	% PM, 200Hz					
Frequency Step:		Х	1%		3%									
Dwell Time:			1 sec	Х	3 sec				sec					
Criteria:		Х	А		В			С						
Frequency (MHz)	Frequency (MHz)		Polarization			Pliant Pliant Pliant Crientation F: Front R: Rear SL: Side, Le SR: Side, Ri			C	Comments				
	_	Η	V	Y	N	SK. Slue,	Rig	ΠL						
80-200		Х	Х	Х		F			DC output volta within customer					
80-200		Х	Х	Х		R	-		DC output volta within customer					
80-200		Х	Х	Х		SI			DC output volta within customer	ige fluctuate	d, but			
80-200		Х	Х	Х		SF	ι		DC output volta within customer	ige fluctuate	d, but			
200-1000		Х	X	Х		SF	2		No susceptibilit	v noted.				
200-1000		X	X	X		SI			No susceptibilit					
200-1000		X	X	X	1	R			No susceptibilit	2				
200-1000		X	X	X		F			No susceptibilit	5				
Compliant X			Not Cor	npliant					Photo X					

Nemko USA	A, Inc.	11696 Sorrento Valley Road, Suite F, San Diego, CA 9212 Phone (858) 755-5525 - Fax (858) 452-181								
DATE	DOCUMENT	Г NAME	DOCUMENT #	PAGE						
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	54 of 87						

Client	TDK-Lambda	Americas Inc.	EUT Name	Dorrer	mler for huilding in	
Quote #:	1027254		EUT Model	CPFE10	ply for building-in	
	Device Type	Model #		Used	Cal Done	Cal Due
Signal Ge	• •	mouel	7135et #	Oseu	Cui Done	Cui Due
Agilent		E8254A	836			
HP		8648	746			
Gigatronic	<u>د</u>	1018	440			
Fluke	5	6060B	212			
	tion Generator	8116A	407			
	ENERATOR, HP	8673C	932	X	May 24, 2010	May 24, 2011
Signal Gen		8642B	751	X	May 27, 2010	May 27, 2011
<u>Other</u>	,					
Boonton		EMCO				
Multimeter,	Fluke	111	814	X	Oct. 04, 2010	Oct. 04, 2011
			011			
Field Sens	sors		'			'
AR		FP4000	730			
AR		FP4080	733			
ETS Lindg	gren	HI-6005	922	Х	Dec. 17, 2010	Dec. 17, 2011
Amplifier	/ Directional (Couplers				
AR		2500L:	739		NCR	NCR
AR		DC2035	727		NCR	NCR
AR		500W1000	M5 740	Х	NCR	NCR
AR		DC618D	747		NCR	NCR
AR		200T1G3N	13 743	Х	NCR	NCR
AR		DC714D	724		NCR	NCR
AR		200T2G8M	[4 848		NCR	NCR
AR		DC7280	726		NCR	NCR
AR		200T8G18	M3 745		NCR	NCR
AR		DC7450	723		NCR	NCR
Antennas						
Manufac	turer Mo	del VSWR	Asset #	Used	Cal Done	Cal Due
EMCO	3109	1.9:1	EA 2466	Х	NCR	NCR
Electro-Me	etrics RGA-	25 2.0:1	372	Х	NCR	NCR
Electro-Me	etrics RGA-	30 1.5:1	350			
EMCO	3115	1.5:1	752		NCR	NCR
EMCO	3115	1.5:1	529		NCR	NCR
AH System	ns SAS-5	1.6:1	877		NCR	NCR
AR	AT40	02A 1.6:1	728	X	NCR	NCR

Nemko USA	A, Inc.		Valley Road, Suite F, San Dieg Phone (858) 755-5525 - Fax (8	· ·
DATE	DOCUMENT	Г NAME	DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	55 of 87

5.6. Electrical Fast Transient Burst Immunity Test Results

Client	TDK-Lamb	da Am	erica	s Inc.						Te	mperature			21		°C
Quote #:	1027254									Re	lative Humi	dity		46		%
EUT Name	Power supply	y for bui	ilding	-in						Ba	rometric Pro	essu	re	101.6 kPa		kPa
EUT Model	CPFE1000	F -2 8							'	Te	st Location			West	Gı	ound Plane 2
Governing Doc	EN 55024								'	Te	st Engineer			Alex	Ch	ang
Basic Standard	IEC 61000-	-4-4								Da	te			May	19,	2011
Test Level:																
AC / DC Mains /	Control Port	s X	K ().5kV		Х	1.0k	V	Х	2	2.0kV		4.01	κV		
Signal Ports			().25kV	r		0.5k	V]]	1.0kV		2.01	κV		
Test Duration:	X 61	sec														
Test Equipment	ļ					Ass	et #	U	J sed		Calibrati	on I	Done	C	ali	oration Due
EMC Partner Tra							45		Х	•	Oct. 04					t. 04, 2011
Fluke Multimeter	r					81	15		Х		Aug. 04	4, 20)1	1	٩u	g. 04, 2011
Performance Cr	riteria •		A	X	B	Г		C								
<u>I triormanee en</u>			Π	Δ	D			C								
Direct Injection	Output Patl	n														
Test Level	Polarity (+/-)	L1		L2]	PE					Со	mm	ents			
2.0kV	+/-	Х					Min	nor m	V fl	uct	tuation					
2.0kV	+/-			Х			Min	nor m	V fl	uct	tuation					
2.0kV	+/-					X		T vol)mV	on 2	8VDC	Co	utput model,
2.0kV	+/-	Х		Х			Min	nor m	V fl	uct	tuation					
2.0kV	+/-			Х		X	Min	nor m	V fl	uct	tuation					
2.0kV	+/-	Х				X	Min	nor m	V fl	uct	tuation					
2.0kV	+/-	Х		Х		Х	Min	nor m	V fl	uct	tuation					
Cable Description	on (Clamp I	njection	<u>n)</u>													
.5kV	+/-						No	I/O p	ort.							
Compliant X		Ion C.		ont							Phot		X			
Compliant X	ľ	lon-Co	mpn	ant							Phot	.0	Λ			

Nemko USA	A, Inc.		alley Road, Suite F, San Dieg Phone (858) 755-5525 - Fax (8	·
DATE	DOCUMENT	Г NAME	DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	56 of 87

5.7. Power Line Surge Immunity Test Results

Client	TDK-	Lambd	a Am	ericas	Inc.				Tem	peratu	ire		2	27	°C	
Quote #:	10272	54							Relat	tive H	[umid	ity	3	3	%	
EUT Name	Power	supply 1	for bui	lding-	·in				Baro	metrie	c Pres	sure	10	0.9	kP	a
EUT Model		1000F-							Test Location				ESD Room			
Governing Doc	EN 55									Engir			Alex Chang			
Basic Standard		1000-4	-5						Date	<u> </u>				24, 2		
	-													,		
EUT Power:			N	umbe	er of Strik	es per	Volta	ige:		Angle	e	Rep	oetitio	ons	P	olarit <u>y</u>
X 230VAC	@ 50Hz			Fiv	/e (5)					0°			5			+/-
220VAC	@ 60Hz		Х	Тw	venty (20)					90°			5			+/-
120VAC	@ 60 Hz	Z								180°			5			+/-
230/400V	AC @ 5	0 Hz								270°			5			+/-
										360°			0			+/-
							_									
Waveform Gen	erator 7	ype:		Ri	ng Wave	Х	Co	mbin	ation							
<u>Test Equipmen</u>				<u> </u>	Jsed		<u>sset #</u>			bratic			<u>(</u>			<u>n Due</u>
EMC Partner M		erator			Х	_	845			et. 04,					04, 2	
Fluke Multimete	er				Х		815		A	ug. 04	l, 201			Aug.	. 04,	2011
Performance Cri	teria:	A	4		X B		С									
	X7 /X	1 1)	N 7 1 0	1 7 7 (r 10)	TV D	01 7 7 /1	. 1	2)	37 4	01 3 7 /	T 1		0.0	1 1 7 /	7 • 1)
L - Gnd X 0.5	· · · · · · · · · · · · · · · · · · ·				Level 2)		0kV (l					Level	/		· ·	Special)
L-L X 0.25	skV (Lev	rel I)	X 0.5	okv (Level 2)	<u>X</u> 1.	0kV (I	Level	3)	<u>x 2</u> .	0KV (Level	4)	??	kv ()	Special)
	Level 1			Los	vel 2		Lor	rel 3			Los	vel 4			Spe	aial
CM		DM	C		DM	6	M	-	DМ	C	M	D	м	CN	-	DM
0.5k		25kV	1.0		0.5kV)kV		$\frac{1}{0kV}$)kV	2.0		CI	VI	DIVI
+	- +	-	+	-	+ -	+	-	+	-	+	-	+	_	+	-	+ -
	X		X	X		X	X			X	X					
	X		X	X		X	X			X	X					
N-L1	X	Χ		-	X X		_	Χ	X		_	X	X			
																1
Compliant X					Non-Co	mplian	t				Ph	noto	Х			
						r										

Nemko USA	A, Inc.	11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810						
DATE	DOCUMENT	Г NAME	DOCUMENT #	PAGE				
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	57 of 87				

5.8. RF Conducted Common Mode Disturbance Immunity Test Results

Client	TDK-L	amb	da Americas Inc.				Temper	rature		2	2	°C	
Quote #:	102725	4					Relativ	e Hun	nidity	4	6	%	
EUT Name	Power su	upply	for building-in				Barome	etric P	ressure	10	1.7	kPa	
EUT Model	CPFE1	000F	-28				Test Lo	ocation	n	West	West Ground Plane 2		
Governing Doc	EN 550	24					Test Er	nginee	r	Alex	Alex Chang		
Basic Standard	IEC 61	000-	4-6			Date			May	19, 2	011		
Test Level:			3Vrms	X	10Vrm	3			Selecte	d Frea	uencie	25	
Modulation:			None (CW)		80%AM @ 1kHz				Beleete	urreq			
	quency Range: X 0.15 – 80 MHz				0.15-23		12						
Step:	<u></u>	X	1%		10%	0101112			1.5 x 1	0 ⁻³ /dec	rade		
Dwell:		X	3 seconds		10/0				1.0 A 1	. /uu			
Performance Criteria: A					В								
<u>i criormance cri</u>	<u></u>			X	2								
Injection Point			In	jection N	/lethoo	1: 0	Clamp	X	CDN				
Comments:		EU	T voltage fluctuat	ed 2	80mV or	28VDC	Coutput 1	model	, self-rec	overab	le		
2 Injection Point	t					In	jection M	/lethoo	1: 0	Clamp		CDN	
Comments:													
3 Injection Point	t (Cable)					In	njection Method: Clam			Clamp		CDN	
Comments:												-	
Injection Point	t (Cable)				Injection Method:								
Comments:													
5 Injection Point	t (Cable)					In	jection N	/lethoo	1:				
Comments:													
Test Equipment	Used				Asset #	X if U	Jsed	Calib	ration D	one	Calil	oration Due	
HP 8657A (Signa		or)		-	948	X			. 18, 201			v. 18, 2011	
Boonton 4232A (er)		887	X			. 11, 201			g. 11, 2011	
Werlatone, Direct					878	X			. 21, 201			r. 21, 2012	
Boonton 51011-E			ensor		888	X			, 11, 201			g. 11, 2011	
Microlab TB-5M	· · · · · ·				330	X			. 29, 201			b. 29, 2011	
FCC-801-M3-25					466	X			. 12, 201			g. 12, 2011	
EIN 3100L (Amp					913	X			NCR			NCR	
Fluke 111, Multin					815		X Aug. 04, 2010			0	Aug. 04, 2011		
Compliant X		N	on-Compliant									Photo X	

Nemko USA	A, Inc.	11696 Sorrento Valley Road, Suite F, San Diego, CA 9212 Phone (858) 755-5525 - Fax (858) 452-1810						
DATE	DOCUMENT	Г NAME	DOCUMENT #	PAGE				
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	58 of 87				

5.9. Power Frequency Magnetic Field Immunity

Client:	TDK	-Lambda Ame	ricas Inc.		Temperature:	23	°C	
Quote #:	10272	254			Relative Humidity:	54	%	
EUT Name:	Power	supply for buil	ding-in		Barometric Pressure:	101.8	kPa	
EUT Model:	CPFE	E1000F-28			Test Location:	West Ground Plane 2		
Governing Doc:	EN 5	5024			Test Engineer:	Alex Chang		
Basic Standard:	IEC 6	51000-4-8			Date:	May 17, 2011		
Voltage:	230V	AC @ 50Hz						
Frequency:		DC	60Hz	X	50Hz			
Threat Level:		1A/m	3A/m	Х	30A/m			
Duration Per Ax	xis: X	5 Min						
Criteria:		A	В		С			

	Test Equip	1		
<u>Test Equipment Used</u>	<u>Asset #</u>	Used	Calibration Done	Calibration Due
Nemko Magnetic Coil, Small	821	X	NCR	NCR
ELGAR Power Supply	220	Х	NCR	NCR
Narda ELT-400	851	Х	Jul. 14, 2010	Jul. 14, 2011
Narda B-field sensor	852	Х	Jul. 14, 2010	Jul. 14, 2011
Fluke Multimeter Model 111	815	X	Aug. 04, 2010	Aug. 04, 2011
Beckman Digital Multimeter, Model 2020	516	X	Jul. 06, 2010	Jul. 06, 2011

<u>Test Axis</u>	Com <u>Y</u>	pliant <u>N</u>	Comments
X	X		No susceptibility noted.
Y	X		No susceptibility noted.
Z	X		No susceptibility noted.
			Photo X

Nemko USA	A, Inc.	11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810					
DATE	DOCUMENT	Г NAME	DOCUMENT #	PAGE			
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	59 of 87			

5.10. Voltage Dips and Interruptions Immunity Test Results

Client	TDK-Lambda Ar	nericas Inc.		Temperature	22	°C	
Quote #:	1027254			Relative Humidity	45	%	
EUT Name	Power supply for b	uilding-in		Barometric Pressure	100.7	kPa	
EUT Model	CPFE1000F-28			Test Location	Enviror	mental Room	
Governing Doc	EN 55024			Test Engineer	Alex Chang		
Basic Standard	IEC 61000-4-11			Date	May 26, 2011		
EUT Voltage: Equipment Used	X 230VAC @	50Hz <u>Used</u>	120VAC @	60Hz	<u>(</u>	Cal Due	
California Instrur	ments AC Power	Х	604	Mar. 21, 2011	Mai	. 21, 2012	
Xitron 2520 Stan	dard Impedance	Х	581	Mar. 21, 2011	Mar	. 21, 2012	
Teseq CCN 1000	-3-75	Х	961	Mar. 21, 2011	Mai	. 21, 2012	
Fluke Multimeter	Model 111	Х	815	Aug. 04, 2010	Aug	g. 04, 2011	
Changes Occur	At: X Zero C	rossing		i	I		

Voltage Dips

% Reduction	n <u>Duration</u>		Comp	Compliance		
	sec/period	<u>A</u>	B	<u>C</u>	Yes	No
X >95%	10msec / 0.5		X		Х	
30%	10msec / 0.5					
X >95%	20msec / 1		Х		Х	
30%	500msec / 25					
X 60%	200msec / 25			X	Х	
X 30%	500msec / 25			X	X	
X 20%	5000msec / 250			X	X	
Not Require	d					

Comments: No disturbance noted

Voltage Interruptions

		% Reduction	Duration			Compliance		
			sec/period	<u>A</u>	<u>B</u>	<u>C</u>	Yes	<u>No</u>
	Х	>95%	5000msec / 250			X	Х	
		100%	20msec / 1.0					
		Not Required						
C	om	nents: EUT shuts de	own and power back up, re	covers by itsel	f.			
						Photo	Х	

Nemko USA	A, Inc.	11696 Sorrento Valley Road, Suite F, San Diego, CA 9212 Phone (858) 755-5525 - Fax (858) 452-181						
DATE	DOCUMENT	Г NAME	DOCUMENT #	PAGE				
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	60 of 87				

5.11. Oscillatory Waves Immunity Test Results

Client		TDK-	Lambd	a Am	ericas	s Inc.			Te	mperati	ıre		21	°(2	
Quote #:		10272	54							lative H		-	36	%)	
EUT Nan	ne	_							Ba	rometri	c Pres	sure	100.	9 k	Pa	
			supply		lding-	·in									1.5	
EUT Mod			1000F-	28						st Locat				Environmental Room		
Governing	0	EN 55								Test Engineer Alex Chang						
Basic Star	ndard	IEC 6	1000-4	-12					Da	ite				2, 2011		
													Jun. 0.	3, 2011		
EUT Pow	ver:			N	ımbe	ber of Strikes per Voltage:			e:	Angle Reg			oetition	. 1	Polarity	
)VAC (0 50Hz		1		/e (5)		ontag	<u></u>	00	<u> </u>	110	5		+/-	
					_	venty (20)				<u>90°</u>			5		+/-	
	VAC @	/		1	1 1	(20)				180°	1		5		+/-	
		/								270°			5		+/-	
250	230/400VAC @ 50 Hz									<u>360°</u>			0		+/-	
										500			0		.,	
Waveform	m Gene	rator]	Гуре:	X	Ri	ng Wave		Con	nbinatio	n						
					-											
<u>Test Equ</u>					<u> </u>	Jsed		<u>et #</u>		libratio					on Due	
Keytek El			1			X 1303							ified pri			
Fluke Mu					Х			15		Aug. 04, 2010				ug. 04,		
Oscillosco	ope				X 935				Sept. 14, 2010			S	Sept. 14, 2011			
Performat	nce Crite	eria:	XA	4		В		С								
L - Gnd	0.51-3	7 (T	.1.1)	1.0	1.37 ([arra] 2)	v b o	J 7 (I	evel 3)	4	01.37 (Larval	4)	001.37	(Crasial)	
L - Gna L - L		/ (Leve V (Lev				Level 2) Level 2)			evel 3)			Level Level			(Special) (Special)	
L-L	0.238	v (Lev	/el 1)	0.5	KV (.	Level 2)	A 1.0	KV (L	ever 5)	۷.	UKV (Level	4)	? ? K V	(Special)	
	(Class 1			Cla	ss 2		Clas	s 3		Lev	el 4		Sp	ecial	
	СМ]	DM	C	Μ	DM	CN	Λ	DM	C	М	D	M	CM	DM	
	0.5kV	0.1	25kV	1.0	kV			τV	1.0kV	4.0)kV	2.01	kV			
	+ .	. +	-	+	-	+ -	+	-	+ .	- +	-	+	- +		+ -	
N-Gnd							X	X								
L1–Gnd							X	X								
N-L1									X X							
Complian	t X					Non-Cor	npliant				Ph	ioto	Х			

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	61 of 87

5.12. Voltage Fluctuation Immunity Test Results

TDK-Lambda Americas Inc.	Temperature	22	°C
1027254	Relative Humidity	41	%
	Barometric Pressure	100.7	kPa
Power supply for building-in			
CPFE1000F-28	Test Location	Environ	mental Room
EN 55024	Test Engineer	Alex Chang	
IEC 61000-4-14	Date	May 26, 2011	
	1027254 Power supply for building-in CPFE1000F-28 EN 55024	1027254Relative HumidityPower supply for building-inBarometric PressureCPFE1000F-28Test LocationEN 55024Test Engineer	1027254Relative Humidity41Power supply for building-inBarometric Pressure100.7CPFE1000F-28Test LocationEnvironEN 55024Test EngineerAlex Ch

<u>Equipment Used</u>	Used	Asset #	Cal Done	Cal Due
California Instruments AC Power	Х	604	Mar. 21, 2011	Mar. 21, 2012
Xitron 2520 Standard Impedance	X	581	Mar. 21, 2011	Mar. 21, 2012
Teseq CCN 1000-3-75	X	961	Mar. 21, 2011	Mar. 21, 2012
Fluke Multimeter Model 111	X	815	Aug. 04, 2010	Aug. 04, 2011

<u>Voltage fluctuation %</u> ($\Delta U = \pm 12\% U_n$)

% Fluctuation		Repetition period /	<u>Criteria</u>			Compliance	
		Duration	A	B	<u>C</u>	Yes	No
Х	+12% (257.6V)	5sec / 2sec	Х			Х	
Х	-12% (202.4V)	5sec / 2sec	Х			Х	
	Not Required						
om	ments: No disturbanc	e noted					

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	62 of 87

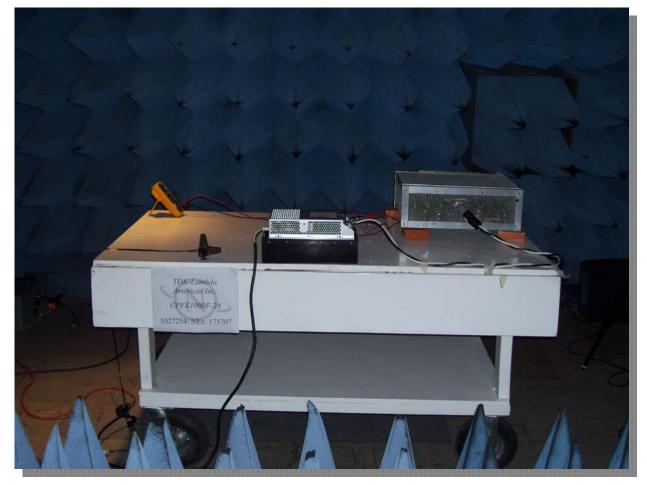
Photograph 3. Conducted Emissions Test Configuration

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	63 of 87

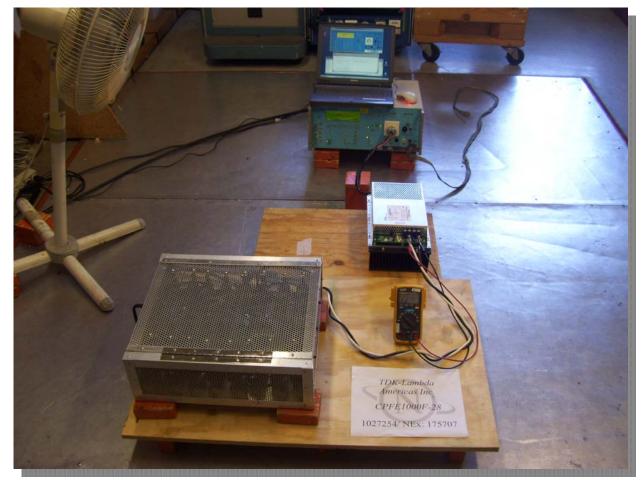
Photograph 4. Radiated Emissions Test Configuration

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	64 of 87

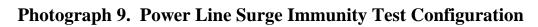
Photograph 5. Harmonics & Flicker Test Configuration

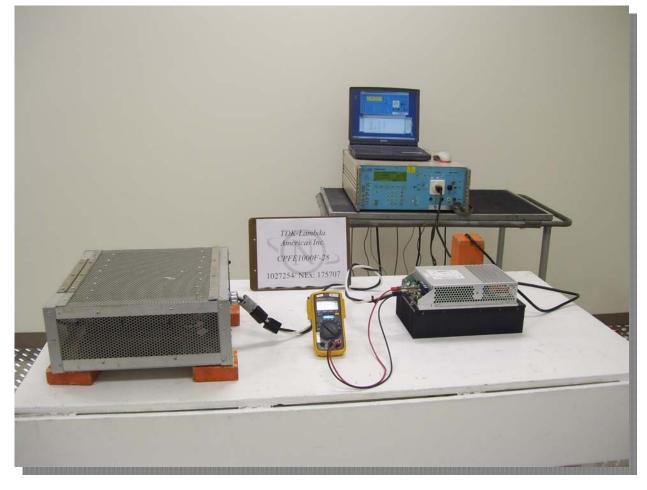

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	65 of 87

Photograph 6. ESD Test Configuration


Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	66 of 87

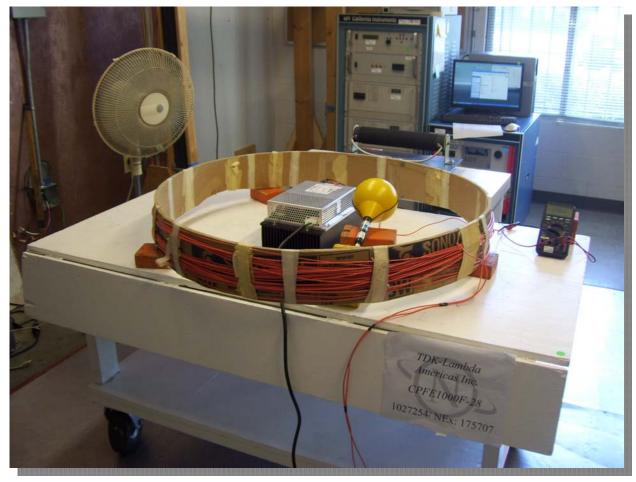
Photograph 7. Radio Frequency Immunity Test Configuration



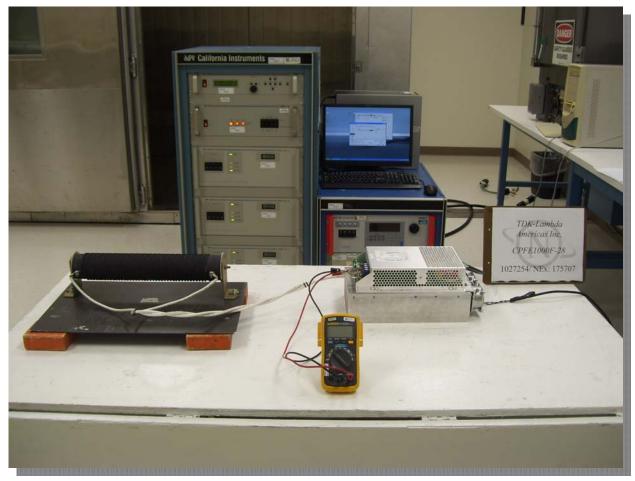

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	67 of 87

Photograph 8. EFT Immunity Test Configuration

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	68 of 87


Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810			
DATE	DOCUMENT NAME		DOCUMENT #	PAGE	
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	69 of 87	

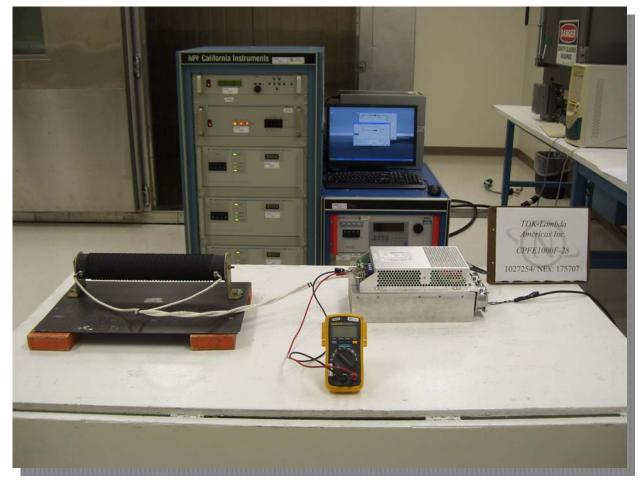
Photograph 10. RF Conducted Immunity Test Configuration


Nemko USA, Inc.	11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810			
DATE DOCUMENT NAME	DOCUMENT # PAGE			
June 06, 2011 TDK-Lambda Americas Inc CPFE1000F-	- EMC Test Report 2011 06175707-2 EMC 70 of 87			

Photograph 11. Power Frequency Magnetic Field Immunity Test Configuration


Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810			
DATE	DOCUMENT NAME		DOCUMENT #	PAGE	
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	71 of 87	

Photograph 12. Voltage Dips and Interruptions Immunity Test Configuration


Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	72 of 87

Photograph 13. Oscillatory Waves Immunity Test Configuration

Nemko USA	A, Inc.	11696 Sorrento Valley Road, Suite F, San Diego, CA 9 Phone (858) 755-5525 - Fax (858) 452-		/
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	73 of 87

Photograph 14. Voltage Fluctuation Immunity Test Configuration

Nemko USA	Nemko USA, Inc. 11696 Sorrento Valley Road, Suite F, San Di Phone (858) 755-5525 - Fax		. , , , ,	,
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc C	PFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	A1 of 87

APPENDIX A A. Radiated Emissions Measurement Uncertainties

1. Introduction

ISO/IEC 17025:2005 and ANSI/NCSL Z540.3: 2006 require that all measurements contained in a test report be "traceable". "Traceability" is defined in the International Vocabulary of Basic and General Terms in Metrology (ISO: 1993) as: "the property of the result of a measurement... whereby it can be related to stated references, usually national or international standards, through an unbroken chain of comparisons, all having stated uncertainties".

The purposes of this Appendix are to "state the Measurement Uncertainties" of the conducted emissions and radiated emissions measurements contained in Section 5 of this Test Report, and to provide a practical explanation of the meaning of these measurement uncertainties.

2. Statement of the Worst-Case Measurement Uncertainties for the Conducted and Radiated Emissions Measurements Contained in This Test Report

Radiated Emissions Measurement Detection Systems	Applicable Frequency	"U" for a k=2
	Range	Coverage Factor
Spectrum Analyzer with QPA & Preamplifier	30 MHz - 200 MHz	+3.9 dB, -4.0 dB
Spectrum Analyzer with QPA & Preamplifier	200 MHz-1000 MHz	+/- 3.5 dB
Spectrum Analyzer with Preamplifier	1 GHz - 18 GHz	+2.5 dB, -2.6 dB
Spectrum Analyzer with Preamplifier	18 GHz - 40 GHz	+/- 3.4 dB

 Table 1: Worst-Case Expanded Uncertainty "U" of Measurement for a k=2 Coverage Factor

NOTES:

1. Applies to 3 and 10 meter measurement distances

2. Applies to all valid combinations of Transducers (i.e. LISNs, Line Voltage Probes, and Antennas, as appropriate)

3. Excludes the Repeatability of the EUT

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT	NAME	DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc C	PFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	A2 of 87

3. Practical Explanation of the Meaning of Radiated Emissions Measurement Uncertainties

In general, a "Statement of Measurement Uncertainty" means that with a certain (specified) confidence level, the "true" value of a measurand will be between a (stated) upper bound and a (stated) lower bound.

In the specific case of EMC Measurements in this test report, the measurement uncertainties of the conducted emissions measurements and the radiated emissions measurements have been calculated in accordance with the method detailed in the following documents:

- o ANSI Z540.2 (2002) Guide to the Expression of Uncertainty in Measurement
- o NIS 81:1994, The Treatment of Uncertainty in EMC Measurements (NAMAS, 1994)
- NIST Technical Note 1297(1994), Guidelines for Evaluating and Expressing the Uncertainty of NIST Measurement Results (NIST, 1994)

The calculation method used in these documents requires that the stated uncertainty of the measurements be expressed as *an "expanded uncertainty"*, *U*, *with a k=2 coverage factor*. The practical interpretation of this method of expressing measurement uncertainty is shown in the following example:

EXAMPLE: Assume that at 39.51 MHz, the (measured) radiated emissions level was equal to +26.5 dBuV/m, and that the +/-2 standard deviations (i.e. 95% confidence level) measurement uncertainty was +/-3.4 dB.

Nemko USA	A, Inc.	11696 Sorrento Valley Road, Suite F, San Diego, CA 921 Phone (858) 755-5525 - Fax (858) 452-18		,
DATE	DOCUMENT	NAME	DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc C	PFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	B1 of 87

APPENDIX B B. Nemko USA, Inc. Test Equipment & Facilities Calibration Program

Nemko USA, Inc. operates a comprehensive Periodic Calibration Program in order to ensure the validity of all test data. Nemko USA's Periodic Calibration Program is fully compliant to the requirements of NVLAP Policy Guide PG-1-1988, ANSI/NCSL Z540.3: 2006, ISO 10012:2003, ISO/IEC 17025:2005, and ISO-9000: 2000. Nemko USA, Inc.'s calibrations program therefore meets or exceeds the US national commercial and military requirements [N.B. ANSI/NCSL Z540-1-1994 replaced MIL-STD-45662A].

Specifically, all of Nemko USA's *primary reference standard devices* (e.g. vector voltmeters, multimeters, attenuators and terminations, RF power meters and their detector heads, oscilloscope mainframes and plug-ins, spectrum analyzers, RF preselectors, quasi-peak adapters, interference analyzers, impulse generators, signal generators and pulse/function generators, field-strength meters and their detector heads, etc.) and certain *secondary standard devices* (e.g. RF Preamplifiers used in CISPR 11/22 and FCC Part 15/18 tests) are periodically recalibrated by:

- A Nemko USA-approved independent (third party) metrology laboratory that uses NIST-traceable standards and that is ISO Guide 25-accredited as a calibration laboratories by NIST; or,
- A Nemko USA-approved independent (third party) metrology laboratory that uses NIST-traceable standards and that is ISO Guide 25-accredited as a calibration laboratory by another accreditation body (such as A2LA) that is mutually recognized by NIST; or,
- A manufacturer of Measurement and Test Equipment (M&TE), if the manufacturer uses NISTtraceable standards and is ISO Guide 25-accredited as calibration laboratory either by NIST or by another accreditation body (such as A2LA) that is mutually recognized by NIST; or
- A manufacturer of M&TE (or by a Nemko USA-approved independent third party metrology laboratory) that is not ISO Guide 25-accredited. (In these cases, Nemko USA conducts an annual audit of the manufacturer or metrology laboratory for the purposes of proving traceability to NIST, ensuring that adequate and repeatable calibration procedures are being applied, and verifying conformity with the other requirements of ISO Guide 25).

Nemko USA, Inc. 11696 Sorrento Valley Road, Suite F, San D Phone (858) 755-5525 - Fax		•	,	
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc C	PFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	B2 of 87

In all cases, the entity performing the Calibration is required to furnish Nemko USA with a calibration test report and/or certificate of calibration, and a "calibration sticker" on each item of M&TE that is successfully calibrated.

Calibration intervals are normally one year, except when the manufacture advises a shorter interval or if US Government directives or client requirements demand a shorter interval. Items of instrumentation/related equipment which fail during routine use, or which suffer visible mechanical damage (during use or while in transit), are sidelined pending repair and recalibration. (Repairs are carried out either in-house [if minor] or by a Nemko USA-approved independent [third party] metrology laboratory, or by the manufacturer of the item of M&TE).

Each antenna used for CISPR 11 and CISPR 22 and FCC Part 15 and Part 18 radiated emissions testing (and for testing to the equivalent European Norms) is calibrated annually by either a NIST (or A2LA) ISO Standard 17025-Accredited third-party Antenna Calibration Laboratory or by the antenna's OEM if the OEM is NIST or A2LA ISO Standard 17025-accredited as an antenna calibration laboratory. The antenna calibrations are performed using the methods specified in Annex G.5 of CISPR 16-1(2003) or ANSI C63.5-2004, including the "Three-Antenna Method". Certain other kinds of antennas (e.g. magnetic-shielded loop antennas) are calibrated annually by either a NIST (or A2LA) ISO Standard 17025-accredited third-party antenna calibration laboratory, or by the antenna's OEM if the OEM is NIST or A2LA ISO Standard 17025-accredited third-party antenna calibration laboratory, or by the antenna's OEM if the OEM is NIST or A2LA ISO Standard 17025-accredited as an antenna calibration laboratory using the procedures specified in the latest version of SAE ARP-958.

In accordance with FCC and other regulations, Nemko USA recalibrates its suite of antennas used for radiated emissions tests on an annual basis. These calibrations are performed as a precursor to the FCC-required annual revalidation of the Normalized Site Attenuation properties of Nemko USA's Open Area Test Site. Nemko USA, Inc. uses the procedures given in both Sub clause 16.6 and Annex G.2 of CISPR 16-1 (2003), and, ANSI C63.4-2003 when performing the normalized site attenuation measurements.

Nemko USA,	Inc.	11696 Sorrento Valley Road, Suite F, San Diego, CA 9 Phone (858) 755-5525 - Fax (858) 452-		8 /
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	C1 of 87

APPENDIX C C. NVLAP Accreditation

Nemko USA,	Inc.	11696 Sorrento Valley Road, Suite F, San Diego, CA 921 Phone (858) 755-5525 - Fax (858) 452-18		0 /
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	C2 of 87

APPENDIX D

CONDUCTED EMISSIONS PER MIL-STD-461D/E CE102

D.1.1 CE102 Conducted Emissions Test Method

The purpose of this test was to measure the conducted emissions appearing on the power lines of the UUT in the frequency range 10 kHz to 10 MHz and to determine whether these emissions were in compliance with the CE102 requirements defined in MIL-STD-461E.

The UUT configured as shown in Figure D.1-1. During this test, the UUT was placed on a conductive ground plane and bonded to the plane. The power lines were connected through the Line Impedance Stabilization Network (LISN). The LISN measurement port was then connected via coaxial cable to the detection system located adjacent to the ground plane. The test equipment was configured as indicated in Figure D.1-2 and Figure D.1-3 and complete lists of the test equipment and calibration data are provided in D.1.3.

The equipment was configured as indicated in Figure D.1-2. Test set up calibration was then performed as described in MIL-STD-461E. The power to the LISN was temporary disconnected and a signal generator connected to the input of the LISN. An oscilloscope was then connected at the input as indicated in Figure D.1-3 in order to monitor the output of the signal generator. A calibrated signal of amplitude 6 dB below the CE102 limit was then applied at frequencies of 10 kHz, 100 kHz, 2 MHz and 10 MHz. The oscilloscope was used to monitor the strength and waveform of the signal at 10 kHz and 100 kHz. The signal was verified to be sinusoidal and the appropriate level. The data were then reduced by applying the LISN correction factors and plotted together with the applicable MIL-STD-461E limit.

The test data sheets pertaining to this test are presented in Section D.1.2.

Test Results: Passed. The UUT is in compliance with the CE101 requirement of MIL-STD-461E.

Nemko USA,	Inc.	11696 Sorrento Valley Road, Suite F, San Diego, CA 92 Phone (858) 755-5525 - Fax (858) 452-15		8 /
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	C3 of 87

Figure D.1-1. Photo of CE102 Test Setup

Nemko USA,	Inc.	11696 Sorrento Valley Road, Suite F, San Diego, CA Phone (858) 755-5525 - Fax (858) 452		8 /
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	C4 of 87

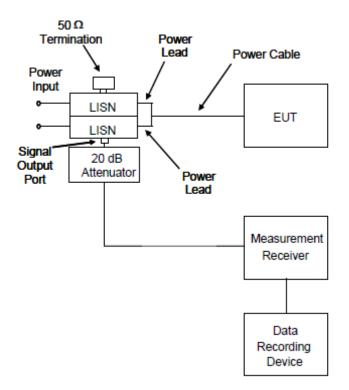
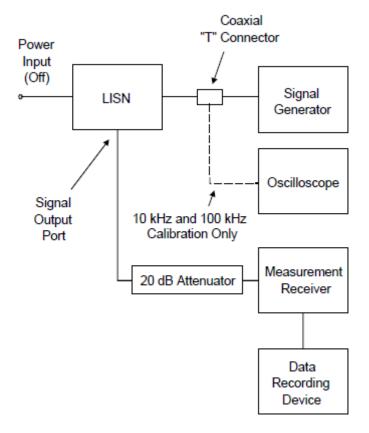



Figure D.1-2. CE102 Test Configuration

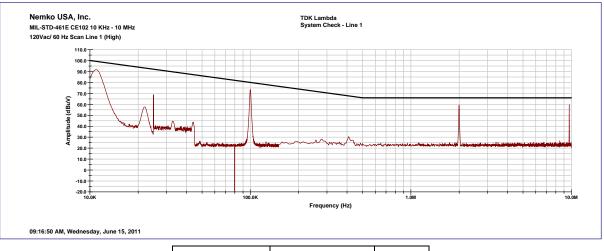

Nemko USA,	Inc.	11696 Sorrento Valley Road, Suite F, San Diego, CA 92 Phone (858) 755-5525 - Fax (858) 452-1		8 /
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	C5 of 87

Figure D.1-3. CE102 Calibration Configuration

		Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	C6 of 87

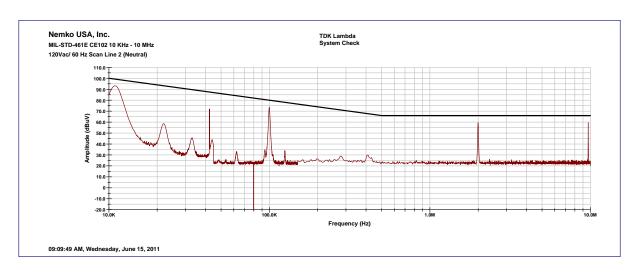

D.1.2 CE102 Test Data

Figure D.1-4. CE102 System Check Line 1

Frequency (kHz)	Amplitude (dBuV)	Margin
11.33	94.445	+0.445
100.37	74.58	+0.58
1982.1	60.348	+0.348
9692.68	59.645	-0.355

Figure D.1-5. CE102 System Check Line 2

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc CPFE1000F-28 - EMC Test Report		2011 06175707-2 EMC	C7 of 87

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	C8 of 87

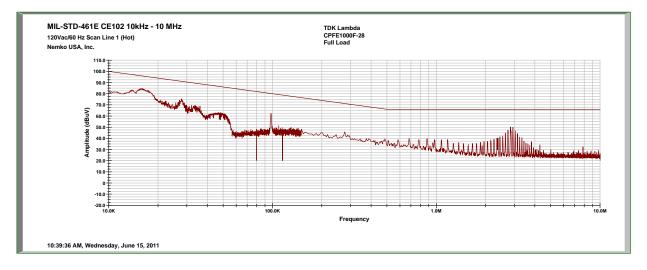


Figure D.1-7. CE102 120Vac/60 Hz High Line

Figure D.1-8. CE102 120Vac/60 Hz Neutral Line

"Data Graph Missing due to corrupted file. Results of testing confirmed to pass requirements".

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810			
DATE	DOCUMENT NAME		DOCUMENT #	PAGE	
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	C9 of 87	

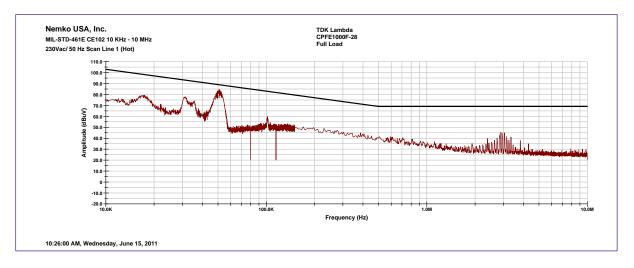
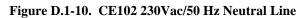
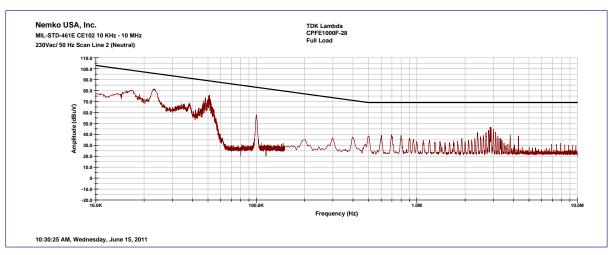




Figure D.1-9. CE102 230Vac/50 Hz High Line

Nemko USA, Inc.		11696 Sorrento Valley Road, Suite F, San Diego, CA 92121 Phone (858) 755-5525 - Fax (858) 452-1810		
DATE	DOCUMENT NAME		DOCUMENT #	PAGE
June 06, 2011	TDK-Lambda Americas Inc	CPFE1000F-28 - EMC Test Report	2011 06175707-2 EMC	C10 of 87

D.1.3 Conducted Emissions CE102 Equipment List

Asset	Description	Model Number	Serial #	Last Cal.	Cal due
No.					
422	Spectrum Analyzer, HP	8568B	2403A01672	8/20/2010	8/20/2011
825	LISN Set, Com-Power	LI-400	25064	6/16/2011	6/16/2012
746	Signal Generator, HP	8648B	3642 <u>1905</u>	1/7/2011	1/7/2012
935	Oscilloscope, Agilent	54845A	US40380201	9/14/2010	9/14/2011
	10 dB (2) Attenuators,		314090,3134		
956	Narda	118A/4	0	2/7/2011	2/7/2012
868	Isolation Transformer	RTE Deltec	N/A	N/A	N/A
870	Power Conditioner	OneAC	N/A	N/A	N/A
-	50 Ohm Termination	HP 908A	N/A	N/A	N/A