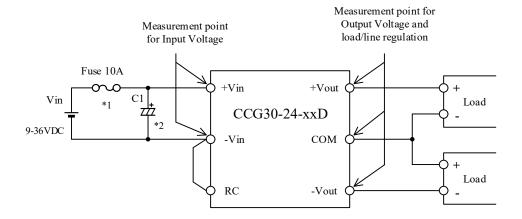
CCG30-24-xxD

C280-01-01C

(This specification sheet also apply to option model /P)

SPECIFICATIONS (1/2)

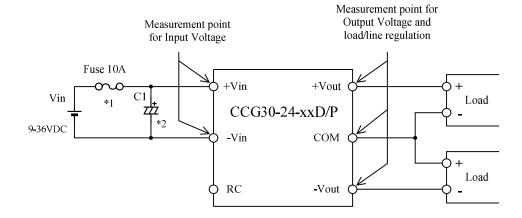

MODEL ITEMS		CCG30-24-12D	CCG30-24-15D
INPUT			
Input Voltage Range	VDC	9 - 36	
Efficiency (Typ) (*1)	%	89	91
Input Current (Typ) (*1)	Α	1.40	1.38
OUTPUT			
Nominal Output Voltage	VDC	±12	±15
Output Voltage Accuracy (*1)	%	±5	
Maximum Output Current	A	1.25	1.0
Maximum Output Power	W	30	30
Maximum Line Regulation (*2)	mV	60	75
Maximum Load Regulation (*3)	mV	120	150
Maximum Load Regulation (*10)	_	480	600
Temperature Coefficient	-	0.02%/°C	
Maximum Ripple & Noise (*4)	mVp-p	95	95
Output Voltage Range	-	Fixed	
Over Current Protection (*5)	-	105% minimum	
Over Voltage Protection	-	None	
FUNCTION			
Remote ON/OFF Control (*6)	-	Possible	
Remote Sensing	-	None	
Parallel Operation	-	None	
Series Operation (*6)	-	Possible	
ENVIRONMENT			
Operating Temperature (*7)	-	-40°C - +110°C(Case), -40°C - +85°C(Ambient)	
Storage Temperature	-	-55°C - +125°C	
Operating Humidity	-	5 - 95%RH (Non Condensing)	
Storage Humidity	-	5 - 95%RH (Non Condensing)	
Vibration (*8)	-	At No Operating, 10 - 55Hz (Sweep for 3min.)	
		Amplitude 1.52 mm Constant (Maximum 90.8m/s ²) X,Y,Z 1 hour each	
Shock (*8)	-	490.3m/s^2	
Cooling	-	Convection cooled / Forced air cooled	
ISOLATION			
Withstand Voltage (*9)	-	Input-Case: 1.0kVDC for 1min. (10mA),	Input-Output: 1.5kVDC for 1min. (10mA)
		Output-Case: 1.0kVDC for 1min. (10mA)	
Isolation Resistance	-	More than $100 \text{M}\Omega$ at 25°C and 70%RH, Output - Case 500VDC	
STANDARD AND COMPLIANCE			
Safety			, EN62368-1, UL60950-1,CSA60950-1
MECHANICAL			
Weight (Typ.)	g	20	
Size (W x H x D)	mm	25.4 x 9.9 x 25.4 (Refe	er to Outline Drawing)

C280-01-01C

SPECIFICATIONS (2/2)

*Read Instruction Manual carefully, before using the power supply unit.
=NOTES=
*1. At 24VDC input voltage and maximum output current. (Ambient Temperature = +25°C.) *2. 9 - 36VDC input voltage, constant load. *3. No Load - Full Load, constant input voltage. (Balanced load) *4. External components are needed for operation. (Refer to Instruction Manual.) *5. OCP TYPE: Hiccup, Automatic recovery. *6. Refer to Instruction Manual. *7. Rating - Refer to Derating Curve in Instruction Manual. *8. The result is evaluated by TDK-Lambda standard measurement conditions. The final equipment should be evaluated to meet its requirements. *9. This specification applies to power supply module as stand-alone. *10. One side fixed Full Load, the other side 20% - Full Load, Constant input voltage. (Asymmetrical load)

BASIC CONNECTION


*Read instruction manual carefully, before using the power supply unit.

==NOTES==

- *1. Use an external DC fuse (fast blow type or normal blow type) for each unit.
- *2. Put input capacitor.
 - C1 : Electrolytic capacitor More than 50V, 120uF
 - 1) Use low impedance electrolytic capacitor with excellent temperature characteristics.
 - 2) If the impedance of input line is high, C1 capacitance must be more than above.

C280-01-02/P-A

BASIC CONNECTION

*Read instruction manual carefully, before using the power supply unit.

==NOTES==

- *1. Use an external DC fuse (fast blow type or normal blow type) for each unit.
- *2. Put input capacitor.
 - C1: Electrolytic capacitor More than 50V, 120uF
 - 1) Use low impedance electrolytic capacitor with excellent temperature characteristics.
 - 2) If the impedance of input line is high, C1 capacitance must be more than above.